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can require a number of spin flips that is exponentidNifA. Haken et al. ca.
1989), and that one can in fact embed arbitrary computaiionlse dynamics
(Orponen 1995). (More precisely, determining whether @mgitoutput spin” is
+1 or—1 in the local minimum reached from a given initial state iS?P&PACE-
complete” problem.)

6.4 The NK Model

Introduced by Stuart Kauffman (ca. 1986) as a “tunable famflfithess land-
scapes”.

A fitness landscapss a triple (X, R, f), whereX is the configuration(or statg
spaceR C X x X is aneighbourhood relatioon X, andf : X — R is afitnesgor
objectivg function

A pointx € X is alocal optimum(of f on X) if
f(y) < f(x) VyRx

and aglobal optimum(maximuny if
fly) < f(x) VyeX

Questions of the “ruggedness” of landscapes (correlatinetsire), number and
height of local optima, sizes of “attraction basins” of Iboeptima with respect to
“hill-climbing” algorithms etc. are of great interest foatural landscapes.

In Kauffman’s NK modelsX = AN (usually justX = {0,1}N) andK is a tun-
able neighbourhood size parameter that influences thedapdsharacteristics,
especially its ruggedness (cf. Figure 4).

The model can be seen as a toy model of “epigenetic intereciio chromo-
somes” — or also a generalisation of the spin glass model.

In Kauffman’s model, a&hromosomeés a N-vector ofloci (genes “positions”),
each of which has a value from a setaifelles A (usually justA = {0,1}). A
“filled-in” chromosomea € AN is called agenotype

The fitness of each gernes {1,...,N} in a genotypex = (ay,...,an) € AN de-
pends on the allelg andK other aIIeIea‘l, e ,a‘K via some local fithess function
fi(a) = fi(a;al,...,a), usually normalised so thdt(a) € [0,1]. The total fit-
ness of a genotype € AN is the normalised sum of its genes’ local fitnesses:

Zlf'(ai;a'l,... ,a)  €1[0,1].
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Figure 4: A smooth (a) and a rugged (b) NK fitness landscape.
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Figure 5: An NK interaction network witNl =5, K = 2.

Figure 5 illustrates an NK network with five loci and two “epitgtic interactions”
per locus.

In Kauffman’s versions of the model, th€ loci affecting locusi can either be
systematically selected as eig-1,...,i +K(mod\), or the chromosome can be
simply “randomly wired”. Thef' are usually determined as randomly generated
2K+1_element “interaction tables”.

From the spin glass perspective, e.g. a 1-D Ising model Mi#ipins can be seen
as anN2 network wheref'(§;S-1,S5+1) = %(3—13 +SS+1), and an SK spin
glass with coefficientd;; and local fielddy as anN(N — 1) network where

fi(s;c\{S}) = :—2L<Z>JijS|Sj +hS.
i]

Basic properties of the NK model, for binary allekes- {0,1} and varying values
of K, include the following:

K=0:

If £1(0)# f'(1)Vi=1,...,N, then there is a unique global optimum, which
is easily found by e.g. the obvious 1-locus mutation “hiitrbing” algo-
rithm.
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Expected length of the hill-climbing path /2. (Half of the alleles are
“right” in the beginning, after that one allele gets fixed atle step.)

Neighbouring genotypes, a’ are always highly correlated, as necessarily
|f(a)—f(a’)| <1/N.

1<K<N-1IL

For K = 1, a global optimum can still be found in polynomial time. For
K > 2, global optimisation is NP-complete. However, for adjacaffect-
ing loci (i ~i+1,...,i+K), the problem can be solved in tinog(2KN)
(Weinberger).

K=N-1

-

Neighbouring genotypes are totally uncorrelated.

= Probability that a given genotype is a local optimum is equal to the
probability thata has the highest rank within its 1-mutant neighbourhood.
This probability is equal to AN+ 1).

= The expected number of local optima f$/ZN + 1).

The expected number of improvement steps for 1-mutanthitibing to hit

a local optimum is proportional to Ig®N (each improvement step typically
halves the rank of the genotype within the neighbourhood).

The expected waiting time for finding an improvement stepgapprtional
toN.

Random Graphs

7.1 The Erdds-Renyi Model(s)

Two closely related “uniform” random graph models introdddn 1959 by P.
Erdds & A. Rényi and E. N. Gilbert.

Consider the family; , of all (labelled, undirected) graphs annodes. Denote
N = (3); then|gn| = 2V.

Define the following two probability spaces

[Erd6s & Rényi:] g (n,M) = all G € g, with exactlyM < N edges, taken with

uniform probability, i.e.

PH{Gy = H) = (N)7*, if H hasM edges
0; otherwise.
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[Gilbert:] ¢ (n, p) = all G € g, taken so that each edge has occurrence probabil-
ity p, 0< p <1, independently of the other edges, i.e.

Pr(Gp=H)=p" (21— pNM if H hasM edges.
q

These spaces are in a precise sense “clogd’+f pN, and are often both referred
to (unfairly to Gilbert) as the “Erdés-Rényi random grapbdel”, or alternatively
as theg (n,M) andg (n, p) random graph models.

LetQ,,n=0,1,2,... be a sequence of probability spacesrafode graphs. Say
thatalmost everya.e) graph inQ, has propertyQ if

Pr(G € Q, hasQ) — 1, asn — co.

Converselyalmost nagraph inQp, has propertyQ if a.e. graph i, has property
-Q, i.e.

Pr(G € Q, hasQ) — 0, asn — co.

Theorem 7.1 Let H be a fixed graph and p a constaft< p < 1. Then a.e.
G € g (n, p) contains an induced copy of H.

Remark: an “induced copy” means here a subset of nodes whdsead sub-
graphs is isomorphic tbl.

Proof. Let k= |H| = number of nodes ik. Then a graplG with n= |G| > k
nodes can be partitioned inta/k| disjoint sets ok nodes (with some left over).
For each of these sets, the probability that it forms an iedwopy ofH isr > 0.

. k
(Preciselyy = ‘Au';ﬁ peH)g(2)—eH) )

Thus, the probability that none of these sets forms an irdlaopy ofH is

(1—r)K — 0, asn — w.g

Letk,| € N. Say that a grap® = (V, E) has propertWy if VU, W, |U| <k, |W| <
I,UNW = @, G contains a node € V such thatv is adjacent to all € U and no
w e W (cf. Figure 6).

Lemma 7.2 For every constant p) < p< 1, and all k| € N, a.e. Ge g (n, p)
has property GJ.
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Figure 6: Propertyy.

Proof. For a fixedU,W,v e V \ (UUW), the probability that the condition is
satisfied is

pV g™l > pkqf

The events are independent for differgnso the probability that no appropriate
exists is

<1_ puqlW|>n—U—|W < (1_ pkql)n—k—l .

There are at most! (U, W)-pairs to be considered, so the probability that some
pair has no good is bounded by
nt(1— pgH)" k! = 0, asn — oo
1
<

Thusina.eG € g (n, p) all (U,W)-pairs have some appropriateq

Corollary 7.3 Let p,0 < p < 1, be a constant. Then (i) a.e. &g (n,p) has
minimum degreé> k, for given constant k (ii) a.e. @ g (n, p) has diameter 2
(iii) a.e. G g (n, p) is k-connected for given constant k.

Proof. (i) and (ii) are immediate.

(iii) In a.e. G € g (n,p), no two nodesus, Uy can be separated by a cutset of
sizek— 1, because we may choose in Lemmal.2 up,u;, W =wq,... ,Wk_1

for arbitraryws, ... ,w¢_1, and obtain a patli;—v—u, connectingu;, u, and
avoidingws, ... ,\Wx_1. O
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Corollary 7.4 Let @ be any first-order sentence about graphs (i.e. quantificatio
over nodes, relations @, Vv) + identity). Then either G= @ or G |= —¢ for a.e.

Geg(np).

Proof. Induction on the structure af, using Lemma 7.2 to eliminate quantifiers.
0
Thus, all the first-order properties af(n, p) for fixed p are easily captured.

Things are more interesting when the number of nodes disdusd/or the prob-
ability p depends om.

Given graphG, denote:

independence numberG)
clique numbew(G)
chromatic numbeg(G)

size of the largest independent seGn
size of the largest clique iG,

smallest number of colours needeed for
colouring nodes i so that no two
adjacent nodes get the same colour.

Lemma 7.5 Given n> k > 2, random Ge g (n, p):

Pr(a(G) > k) < (D q®).

Proof. Probability that giverk-set of nodes irG is independent i$1(|§>. Total
number ofk-sets is(}). O

Theorem 7.6 Let p0 < p < 1ande > 0 be constant. Then for a.e. &g (n, p):

In(1/q) n n
X(G) > 2:+¢ "in(n) =Q (m) = large!

Proof. By Lemma 7.5, for any fixed > k > 2:

Pr(a(G) > k) < (”) q) < riq®

kina+3k(k-1)

=q
21
= q%[_%—’_k_l]

— O forklarge,
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when

K { 2In(n) In(n)
2| In(1/q) In(1/q)
Thus there cannot be aksnodes coloured with same colour for large k

n__Inl/g n
= More thang = 57+ - 5 colours neededs

+k—1} —ofork>(2+¢)

Theorem 7.7 Let p,0 < p < 1 be constant. Then for a.e. &g (n, p):
w(G) € {d,d+1},

where d= d(n, p) is the largest integer such that

G)Mgzmn

(This implies d= 2log, /,(n) + O(loglog(n).) o

A graph property Qs an isomorphism-closed family of graphs, i.eGiie Q (or
“GhasQ”) and G~ G, then alsdG’ € Q.

A graph property ismonotonef it is preserved under addition of edges, i.e. if
G=(V,E) andG' = (V,E’) are graphs such th& C E’ andG hasQ, then also
G’ hasQ.

A threshold functiorior the graph property Q is a functian N — R such that

1Lifp-t
Pr(G € ¢ (n, p(n)) hasQ) — {o if E< t.
Notation:
_p(n)
Pt lim iy =
(U
p<t< rlmnwt(n) =0,
i PN _
p~t < rl[noo t(n) =1

pat & p(n) = O(t(n)).

Denote:Pr(P(p) =Pr(G e g (n,p) hasQ).
Then for monoton®: p1 < p2 = Pr(?(pl) < Pr?(pz) vn.



7. Random Graphs 75

0.8 0.8 0.8

0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2

fn)
0.2 0.4 ) 0.6 0.8 1 P ' 0.2 0.4 0.6 0.8 1P T n0.2 0.4 0.6 0.8 1P

Figure 7:Pr?(p) for (&) small, (b) intermediate and (c) large

Denote:p(r?(a) = the smallesp such thaPr(?(p) > q.

In fact Pr(]?(p) is a continuous, strictly increasing function, so reeﬂ@(a) =
uniquep such thaPR(p) = a.

Figure 7 illustrates the evolution of the functiBf, and a corresponding threshold
functiont(n), for a monotone graph proper@from small to large values of.

Lemma 7.8 A function {n) is a threshold for monotone graph property Q if and
only if

t(n) ~ pR(a)

forall 0 < a < 1.

Proof.
“=" Assumet(n) is a threshold foQ. This means that ip(n)/t(n) — o, then

PR(p(M) —1 ()
and if p(n)/t(n) — 0, then
PR(p(M) —0 (™)
Suppose then that
t(n) % pr(a)
for some O< a < 1. This means that either there is a sequemce,, ... such that
PR (@) /t(n) — o0,

contradicting (*), or there is a sequeneeny, ... such that

Pr(@)/t(n) — 0,
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contradicting (**).
(Note that by definitionPR(p(a)) = a)

“<" Assume that(n) is not a threshold forQ. Then there is either a sequence
Ny, Ny, ... such that

p(NK) /t(ni) — o,
but
PR(p(ng) <a <1
a.e., or a sequenes, ny, ... such that
p(nK) /t(nk) — O,
but
PR(p(n)) > a >0
a.e. In the former case,
t(n) < p(nk) < Py (@),
and in the latter case
t(n) = p(ni) > pR ().

Thus in either casgn) 5 pa(a). O
Theorem 7.9 Every monotone graph property Q has a threshold function.

Proof. For brevity, denot¢)nQ(0() = p(a). Choose some arbitrary9a < % The
goal is to prove thap(a) ~ p(1— a), thus establishing e.g.

t(n)=p (%) = py @)

as a threshold function for Q. (Singga) < p(3) < p(1-a).)

Let me N be such thatl—a)™ < a. Let p= py(a) and consider a sample of
mindependent graphSy,...,Gny, from g (n, p). Then the grapi;U--- UGy, €
¢ (n,q), whereq=1—(1—p)" <mp, and so

Pr(GiU---UGqm hasQ) < Pr(G € g (n,mp(a)) hasQ).
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On the other hand, sin@@ is monotone, if anys; hasQ, then so doe&S1U--- U
Gm. Thus,

Pr(G1U---UG does not hav®) < (1—Pr(G;j hasQ))™
=(1-a)"<a.

Hence,
PR(Mm(a)) > Pr(GaU---UGn hasQ) > 1—a,
and so

Pn(0) < pn(l—a) <mm(a),

i.e.p(a) ~ p(1—a). (Sincemdepends only o, not onn.) o

Consider a graph proper) defined as G hasQ” if X(G) > 0, whereX >0is a
random variable og (n, p).

E.g. if X(G) denotes the number of spanning tree$sothen propertyQ corre-
sponds to connectedness.

A threshold function for propert@ is at(n) such that

(i) p(n) <t(n) = almost noG € G(n, p(n)) hasq.
(i)  p(n) =t(n) = almostallG € G(n, p(n)) haveQ.

If X is integral, then condition (i) can be verified by upper bdngdE[X]; by
Markov's inequality:

Pr(X > 1) < E[X] ( more generally, foa> 0
p(X > a) <E[X]/a).

Condition (ii) is trickier, but can be approached by loweushding E[X], and
upper-bounding VAK]. (So called “second-moment method”.)

Denotep = E[X], 02 = Var[X] = E[(X — W)?] = E[X?] — 2.
Recall Chebyshev’s inequality: for aiy> 0,
2
o)
PI(X — | = A) < 5.
Lemma 7.10 If u > O for n large, andﬁ—j — 0 as n— o, then XG) > 0 for a.e.
Geg(np).
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Proof. If X(G) =0, then|X(G) — | = . Hence

2
Pr(X=0) <Pr(|X—y zu)g%—masn—wo.g

Denote thedensityof a graphG by 8(G) = %

|
Say that a grapls is balancedif 5(G') < 8(G) for all subgraph&’ of G.

Theorem 7.11 Let H be a balanced graph. Then the graph property “G has a
subgraph isomorphic to H” has threshold function®(H).

Proof. Let X(G) =number ofH-subgraphs of G. Ld¢= |[H|,| = e(H), s0d(H) =
| /k. Let us first boundE[X] from above. LeG € g (n, p), wherep = yn~/%H) —
yn—¥/! for somey =y, — 0, and denote

st = {all copies ofH on vertex-set 0G}.

Then|s | = ())h< (DK < nk. Hereh is the number of different arrangements of
H on a set ok verticesh = k! /|Aut(H)|. Thus

EX]= 5 PrH €G)=|x|-p

H' Cx
S nkpl = nk<yn7k/|)| :yl ﬁ 0.
Thus if
p(n) = yn . nfl/é(H) < nfl/é(H),
thenE[X] — 0.

By Markov’s inequality this means that almost @< ¢ (n, p) contains arH-
subgraph for large.

For the other part, we need to bound from above

o> 1
2 P(E[XZ] — ).
Let us try to compute:
EX?]= Y PrH'UH"CG)
H' H"esr
_ Z pe(H’)+e(H”)fe(H’ﬂH”)

H/ H" es

< Z p?-i5(H).

H/ H"ex
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wherei = [H'NH"|. (Note thatd(H'NH") <d(H).)

Denote therw;2 = {(H',H") € 2 2 : |[H'NH"| =i} and compute separately for
eachi the sum

A = ZPr(H’UH” CG)

Case i=0:
= ZPr(H’UH” CG)

= ZPr(H’ CG)-Pr{H" CG) H’,H”independent

Case i> 1;

A = S Pr(H'UH" C G)
3

=Y Y PrHUH'COG)

Hex  H"
[H'NH"|=i

Ky (n—k i K
<l () (o)t =
< ot |-confThp? (yn ik

= Clnk 'hp'y il/kpi
= p-canhpy /X

= Hep (E)hpv "
——

|2 |

= 1P-coy
< W2y /K,

il /k
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Thus, denotings = k¢, we get the estimate

2 A
E[X]:(%JFZ&_?)SHCSVAA

12
and hence
0® E[XY-p |
— =L P cytk_——0.
2 TR

Hence, ifp(n) = yon*/! for y,, — oo, then by Lemma 7.1X(G) > 0 holds for
almost evenG € ¢ (n, p) for largen.o

Corollary 7.12 For k > 3, the property of containing a k-cycle has threshold
t(n) = n~L. (Note: independent of k)

Corollary 7.13 For k > 2, the property of containing a specific tree structure T
on k nodes has threshold functigmj = n=%/ &1 4

Corollary 7.14 For k> 2, the property of containing a k-clique(Ky) has thresh-
old function {(n) = n~%/(k1 4

Denoted*(H) = max{d(H’)|H’ is subgraph ofH }.

Theorem 4.11' The graph property “G has a subgraph isomorphic to H” has
threshold function n¥/9 1) 4

Threshold functions for global graph properties

Also known as “the phase transition”.

The “epochs of evolution”: Consider the structure of randpaphsG € ¢ (n, p),
asp = p(n) increases. The following results can be shown (noterthataverage
node degree):

0. If p<n~2, then a.eG is empty.
1. Ifn=?2 < p<n~1 then a.eGis a forest (a collection of trees).

e The threshold for the apperarance of &ayode tree structure ig =
n—Kk/(k=1)



