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can require a number of spin flips that is exponential inN (A. Haken et al. ca.
1989), and that one can in fact embed arbitrary computationsin the dynamics
(Orponen 1995). (More precisely, determining whether a given “output spin” is
+1 or−1 in the local minimum reached from a given initial state is a “PSPACE-
complete” problem.)

6.4 The NK Model

Introduced by Stuart Kauffman (ca. 1986) as a “tunable family of fitness land-
scapes”.

A fitness landscapeis a triple〈X,R, f 〉, whereX is theconfiguration(or state)
space, R⊆ X×X is aneighbourhood relationonX, and f : X → R is afitness(or
objective) function.

A point x∈ X is a local optimum(of f on X) if

f (y) ≤ f (x) ∀ yRx

and aglobal optimum(maximum) if

f (y) ≤ f (x) ∀ y∈ X

Questions of the “ruggedness” of landscapes (correlation structure), number and
height of local optima, sizes of “attraction basins” of local optima with respect to
“hill-climbing” algorithms etc. are of great interest for natural landscapes.

In Kauffman’s NK models,X = AN (usually justX = {0,1}N) andK is a tun-
able neighbourhood size parameter that influences the landscape characteristics,
especially its ruggedness (cf. Figure 4).

The model can be seen as a toy model of “epigenetic interactions in chromo-
somes” — or also a generalisation of the spin glass model.

In Kauffman’s model, achromosomeis a N-vector of loci (genes, “positions”),
each of which has a value from a set ofallelles A (usually justA = {0,1}). A
“filled-in” chromosomeα ∈ AN is called agenotype.

The fitness of each genei ∈ {1, . . . ,N} in a genotypeα = (a1, . . . ,aN) ∈ AN de-
pends on the alleleai andK other allelesai

1, . . . ,a
i
K via some local fitness function

f i(α) = f i(ai ;ai
1, . . . ,a

i
K), usually normalised so thatf i(α) ∈ [0,1]. The total fit-

ness of a genotypeα ∈ AN is the normalised sum of its genes’ local fitnesses:

f (α) =
1
N

N

∑
i=1

f i(ai ;a
i
1, . . . ,a

i
k) ∈ [0,1].
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Figure 4: A smooth (a) and a rugged (b) NK fitness landscape.

Figure 5: An NK interaction network withN = 5, K = 2.

Figure 5 illustrates an NK network with five loci and two “epigenetic interactions”
per locus.

In Kauffman’s versions of the model, theK loci affecting locusi can either be
systematically selected as e.g.i +1, . . . , i +K(modN), or the chromosome can be
simply “randomly wired”. Thef i are usually determined as randomly generated
2K+1-element “interaction tables”.

From the spin glass perspective, e.g. a 1-D Ising model withN spins can be seen
as anN2 network wheref i(Si;Si−1,Si+1) = J

2(Si−1Si + SiSi+1), and an SK spin
glass with coefficientsJi j and local fieldshi as anN(N−1) network where

f i(Si;σ\{Si}) =
1
2 ∑
〈i j 〉

Ji j SiSj +hiSi .

Basic properties of the NK model, for binary allelesA= {0,1} and varying values
of K, include the following:

K = 0:

If f i(0) 6= f i(1) ∀i = 1, . . . ,N, then there is a unique global optimum, which
is easily found by e.g. the obvious 1-locus mutation “hill-climbing” algo-
rithm.
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Expected length of the hill-climbing path isN/2. (Half of the alleles are
“right” in the beginning, after that one allele gets fixed at each step.)

Neighbouring genotypesα, α′ are always highly correlated, as necessarily
| f (α)− f (α′)| ≤ 1/N.

1≤ K < N−1:

For K = 1, a global optimum can still be found in polynomial time. For
K ≥ 2, global optimisation is NP-complete. However, for adjacent affect-
ing loci (i x i + 1, . . . , i + K), the problem can be solved in timeO (2KN)
(Weinberger).

K = N−1:

Neighbouring genotypes are totally uncorrelated.

⇒ Probability that a given genotypeα is a local optimum is equal to the
probability thatα has the highest rank within its 1-mutant neighbourhood.
This probability is equal to 1/(N+1).

⇒ The expected number of local optima is 2N/(N+1).

The expected number of improvement steps for 1-mutant hill-climbing to hit
a local optimum is proportional to log2N (each improvement step typically
halves the rank of the genotype within the neighbourhood).

The expected waiting time for finding an improvement step is proportional
to N.

7 Random Graphs

7.1 The Erdős-Ŕenyi Model(s)

Two closely related “uniform” random graph models introduced in 1959 by P.
Erdős & A. Rényi and E. N. Gilbert.

Consider the familyGn of all (labelled, undirected) graphs onn nodes. Denote
N =

(n
2

)
; then|Gn| = 2N.

Define the following two probability spaces

[Erdős & Rényi:] G (n,M) = all G ∈ Gn with exactlyM ≤ N edges, taken with
uniform probability, i.e.

Pr(GM = H) =

{
(N

M

)−1
, if H hasM edges

0; otherwise.
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[Gilbert:] G (n, p) = all G∈ Gn, taken so that each edge has occurrence probabil-
ity p, 0≤ p≤ 1, independently of the other edges, i.e.

Pr(Gp = H) = pM(1− p
︸ ︷︷ ︸

q

)N−M, if H hasM edges.

These spaces are in a precise sense “close” ifM ∼ pN, and are often both referred
to (unfairly to Gilbert) as the “Erdős-Rényi random graphmodel”, or alternatively
as theG (n,M) andG (n, p) random graph models.

Let Ωn,n = 0,1,2, . . . be a sequence of probability spaces ofn-node graphs. Say
thatalmost every(a.e.) graph inΩn has propertyQ if

Pr(G∈ Ωn hasQ) → 1, asn→ ∞.

Conversely,almost nograph inΩn has propertyQ if a.e. graph inΩn has property
¬Q, i.e.

Pr(G∈ Ωn hasQ) → 0, asn→ ∞.

Theorem 7.1 Let H be a fixed graph and p a constant,0 < p < 1. Then a.e.
G∈ G (n, p) contains an induced copy of H.

Remark: an “induced copy” means here a subset of nodes whose induced sub-
graphs is isomorphic toH.

Proof. Let k = |H| = number of nodes inH. Then a graphG with n = |G| ≥ k
nodes can be partitioned intobn/kc disjoint sets ofk nodes (with some left over).
For each of these sets, the probability that it forms an induced copy ofH is r > 0.

(Precisely,r = k!
|Aut(H)| p

e(H)q(k
2)−e(H).)

Thus, the probability that none of these sets forms an induced copy ofH is

(1− r)bn/kc → 0, asn→ ∞.2

Let k, l ∈N. Say that a graphG= (V,E) has propertyQkl if ∀U,W, |U | ≤ k, |W| ≤
l ,U ∩W = ∅, G contains a nodev∈V such thatv is adjacent to allu∈U and no
w∈W (cf. Figure 6).

Lemma 7.2 For every constant p,0 < p < 1, and all k, l ∈ N, a.e. G∈ G (n, p)
has property Qkl.
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Figure 6: PropertyQkl.

Proof. For a fixedU,W,v ∈ V \ (U ∪W), the probability that the condition is
satisfied is

p|U |q|W| ≥ pkql

The events are independent for differentv, so the probability that no appropriatev
exists is

(

1− p|U |q|W|
)n−|U |−|W|

≤
(

1− pkql
)n−k−l

.

There are at mostnk+l (U,W)-pairs to be considered, so the probability that some
pair has no goodv is bounded by

nk+l (1− pkql
︸ ︷︷ ︸

<1

)n−k−l → 0, asn→ ∞.

Thus in a.e.G∈ G (n, p) all (U,W)-pairs have some appropriatev. 2

Corollary 7.3 Let p, 0 < p < 1, be a constant. Then (i) a.e. G∈ G (n, p) has
minimum degree≥ k, for given constant k (ii) a.e. G∈ G (n, p) has diameter 2
(iii) a.e. G∈ G (n, p) is k-connected for given constant k.

Proof. (i) and (ii) are immediate.

(iii) In a.e. G ∈ G (n, p), no two nodesu1, u2 can be separated by a cutset of
sizek−1, because we may choose in Lemma 7.2U = u1,u2, W = w1, . . . ,wk−1
for arbitrary w1, . . . ,wk−1, and obtain a pathu1—v—u2 connectingu1, u2 and
avoidingw1, . . . ,wk−1. 2
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Corollary 7.4 Let φ be any first-order sentence about graphs (i.e. quantification
over nodes, relations E(u,v) + identity). Then either G|= φ or G |= ¬φ for a.e.
G∈ G (n, p).

Proof. Induction on the structure ofφ, using Lemma 7.2 to eliminate quantifiers.

2

Thus, all the first-order properties ofG (n, p) for fixed p are easily captured.
Things are more interesting when the number of nodes discussed and/or the prob-
ability p depends onn.

Given graphG, denote:

independence numberα(G) = size of the largest independent set inG,
clique numberω(G) = size of the largest clique inG,

chromatic numberχ(G) = smallest number of colours needeed for
colouring nodes inG so that no two
adjacent nodes get the same colour.

Lemma 7.5 Given n≥ k≥ 2, random G∈ G (n, p):

Pr(α(G) ≥ k) ≤

(
n
k

)

q(k
2).

Proof. Probability that givenk-set of nodes inG is independent isq(k
2). Total

number ofk-sets is
(n

k

)
. 2

Theorem 7.6 Let p,0 < p < 1 andε > 0 be constant. Then for a.e. G∈ G (n, p):

χ(G) >
ln(1/q)

2+ ε
�

n
ln(n)

= Ω
(

n
ln(n)

)

= large!

Proof. By Lemma 7.5, for any fixedn≥ k≥ 2:

Pr(α(G) ≥ k) ≤

(
n
k

)

q(k
2) ≤ nkq(k

2)

= qk lnn
lnq+ 1

2k(k−1)

= q
k
2 [− 2ln(n)

ln(1/q)
+k−1]

→ 0 for k large,
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when

k
2

[

−
2ln(n)

ln(1/q)
+k−1

]

→ ∞ for k > (2+ ε)
ln(n)

ln(1/q)
.

Thus there cannot be a.s.k nodes coloured with same colour for large k
⇒ More thann

k = ln1/q
2+ε · n

lnn colours needed.2

Theorem 7.7 Let p,0 < p < 1 be constant. Then for a.e. G∈ G (n, p):

ω(G) ∈ {d,d+1},

where d= d(n, p) is the largest integer such that
(

n
d

)

p(d
2) ≥ ln n.

(This implies d= 2log1/p(n)+O(loglog(n).) �

A graph property Qis an isomorphism-closed family of graphs, i.e. ifG∈ Q (or
“G hasQ”) and G≈ G′, then alsoG′ ∈ Q.

A graph property ismonotoneif it is preserved under addition of edges, i.e. if
G = (V,E) andG′ = (V,E′) are graphs such thatE ⊆ E′ andG hasQ, then also
G′ hasQ.

A threshold functionfor the graph property Q is a functiont : N → R such that

Pr(G∈ G (n, p(n)) hasQ) −−→
n→∞

{
1, if p� t
0, if p≺ t.

Notation:

p� t ⇔ lim
n→∞

p(n)

t(n)
= ∞,

p≺ t ⇔ lim
n→∞

p(n)

t(n)
= 0,

p∼ t ⇔ lim
n→∞

p(n)

t(n)
= 1,

p≈ t ⇔ p(n) = Θ(t(n)).

Denote:PQ
n (p) = Pr(G∈ G (n, p) hasQ).

Then for monotoneQ: p1 ≤ p2 ⇒ PQ
n (p1) ≤ PQ

n (p2) ∀n.



7. Random Graphs 75

0.2 0.4 0.6 0.8 1
p

0.2

0.4

0.6

0.8

1

P

t(n) 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

t(n)

P

P

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

t(n)

P

p

Figure 7:PQ
n (p) for (a) small, (b) intermediate and (c) largen.

Denote:pQ
n (α) = the smallestp such thatPQ

n (p) ≥ α.

In fact PQ
n (p) is a continuous, strictly increasing function, so reallypQ

n (α) =

uniquep such thatPQ
n (p) = α.

Figure 7 illustrates the evolution of the functionPQ
n , and a corresponding threshold

functiont(n), for a monotone graph propertyQ from small to large values ofn.

Lemma 7.8 A function t(n) is a threshold for monotone graph property Q if and
only if

t(n)≈ pQ
n (α)

for all 0 < α < 1.

Proof.
“⇒” Assumet(n) is a threshold forQ. This means that ifp(n)/t(n)→ ∞, then

PQ
n (p(n)) → 1 (*)

and if p(n)/t(n)→ 0, then

PQ
n (p(n)) → 0 (**)

Suppose then that

t(n) 6≈ pQ
n (α)

for some 0< α < 1. This means that either there is a sequencen1,n2, . . . such that

pQ
nk

(α)/t(nk) → ∞,

contradicting (*), or there is a sequencen1,n2, . . . such that

pQ
nk

(α)/t(nk) → 0,
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contradicting (**).

(Note that by definition,PQ
n (pQ

n (α)) = α!)

“⇐” Assume thatt(n) is not a threshold forQ. Then there is either a sequence
n1,n2, . . . such that

p(nk)/t(nk) → ∞,

but

PQ
n (p(nk)) ≤ α < 1

a.e., or a sequencen1,n2, . . . such that

p(nk)/t(nk) → 0,

but

PQ
n (p(nk)) ≥ α > 0

a.e. In the former case,

t(nk) ≺ p(nk) ≤ pQ
nk

(α),

and in the latter case

t(nk) � p(nk) ≥ pQ
nk

(α).

Thus in either caset(n) 6≈ pq
n(α). 2

Theorem 7.9 Every monotone graph property Q has a threshold function.

Proof. For brevity, denotepQ
n (α) = p(α). Choose some arbitrary 0< α < 1

2. The
goal is to prove thatp(α) ≈ p(1−α), thus establishing e.g.

t(n) = p

(
1
2

)

= pQ
n

(
1
2

)

as a threshold function for Q. (Sincep(α) ≤ p(1
2) ≤ p(1−α).)

Let m∈ N be such that(1−α)m ≤ α. Let p = pn(α) and consider a sample of
m independent graphsG1, . . . ,Gm from G (n, p). Then the graphG1∪ · · · ∪Gm ∈
G (n,q), whereq = 1− (1− p)m ≤ mp, and so

Pr(G1∪· · ·∪Gm hasQ) ≤ Pr(G∈ G (n,mpn(α)) hasQ).
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On the other hand, sinceQ is monotone, if anyGi hasQ, then so doesG1∪ · · ·∪
Gm. Thus,

Pr(G1∪· · ·∪Gm does not haveQ) ≤ (1−Pr(Gi hasQ))m

= (1−α)m≤ α.

Hence,

PrQn (mpn(α)) ≥ Pr(Ga∪· · ·∪Gm hasQ) ≥ 1−α,

and so

pn(α) ≤ pn(1−α) ≤ mpn(α),

i.e. p(α) ≈ p(1−α). (Sincem depends only onα, not onn.) 2

Consider a graph propertyQ defined as “G hasQ” if X(G) > 0, whereX ≥ 0 is a
random variable onG (n, p).

E.g. if X(G) denotes the number of spanning trees ofG, then propertyQ corre-
sponds to connectedness.

A threshold function for propertyQ is at(n) such that

(i) p(n) ≺ t(n) ⇒ almost noG∈ G(n, p(n)) hasQ.
(ii) p(n) � t(n) ⇒ almost allG∈ G(n, p(n)) haveQ.

If X is integral, then condition (i) can be verified by upper bounding E[X]; by
Markov’s inequality:

Pr(X ≥ 1) ≤ E[X] ( more generally, fora > 0
p(X ≥ a) ≤ E[X]/a ).

Condition (ii) is trickier, but can be approached by lower-boundingE[X], and
upper-bounding Var[X]. (So called “second-moment method”.)

Denoteµ= E[X], σ2 = Var[X] = E[(X−µ)2] = E[X2]−µ2.

Recall Chebyshev’s inequality: for anyλ > 0,

Pr(|X−µ| ≥ λ) ≤
σ2

λ2 .

Lemma 7.10 If µ > 0 for n large, andσ2

µ2 → 0 as n→ ∞, then X(G) > 0 for a.e.

G∈ G (n, p).
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Proof. If X(G) = 0, then|X(G)−µ|= µ. Hence

Pr(X = 0) ≤ Pr(|X−µ| ≥ µ) ≤
σ2

µ2 → 0 asn→ ∞. �

Denote thedensityof a graphG by δ(G) = e(G)
|G| .

Say that a graphG is balancedif δ(G′) ≤ δ(G) for all subgraphsG′ of G.

Theorem 7.11 Let H be a balanced graph. Then the graph property “G has a
subgraph isomorphic to H” has threshold function n−1/δ(H).

Proof.Let X(G) =number ofH-subgraphs of G. Letk= |H|, l = e(H), soδ(H) =
l/k. Let us first boundE[X] from above. LetG∈ G (n, p), wherep = γn−1/δ(H) =
γn−k/l for someγ = γn → 0, and denote

H = {all copies ofH on vertex-set ofG}.

Then|H |=
(n

k

)
h≤

(n
k

)
k! ≤ nk. Hereh is the number of different arrangements of

H on a set ofk vertices,h = k!/|Aut(H)|. Thus

E[X] = ∑
H ′⊆H

Pr(H ′ ∈ G) = |H | · pl

≤ nkpl = nk(γn−k/l )l = γl −−→
γ→0

0.

Thus if

p(n) = γn ·n
−1/δ(H) ≺ n−1/δ(H),

thenE[X] −−→
n→∞

0.

By Markov’s inequality this means that almost noG ∈ G (n, p) contains anH-
subgraph for largen.

For the other part, we need to bound from above

σ2

µ2 =
1
µ2(E[X2]−µ2).

Let us try to compute:

E[X2] = ∑
H ′,H ′′∈H

Pr(H ′∪H ′′ ⊆ G)

= ∑
H ′,H ′′∈H

pe(H ′)+e(H ′′)−e(H ′∩H ′′)

≤ ∑
H ′,H ′′∈H

p2l−iδ(H),
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wherei = |H ′∩H ′′|. (Note thatδ(H ′∩H ′′) ≤ δ(H).)

Denote thenH 2
i = {(H ′,H ′′) ∈ H 2 : |H ′∩H ′′| = i} and compute separately for

eachi the sum

Ai = ∑
H 2

i

Pr(H ′∪H ′′ ⊆ G)

Case i= 0:

A0 = ∑
H 2

0

Pr(H ′∪H ′′ ⊆ G)

= ∑
H 2

0

Pr(H ′ ⊆ G) ·Pr(H ′′ ⊆ G) H ′,H ′′independent

≤ ∑
H 2

Pr(H ′ ⊆ G) ·Pr(H ′′ ⊆ G)

=

(

∑
H

Pr(H ′ ⊆ G)

)2

= µ2

Case i≥ 1:

Ai = ∑
H 2

i

Pr(H ′∪H ′′ ⊆ G)

= ∑
H ′∈H

∑
H ′′:

|H ′∩H ′′|=i

Pr(H ′∪H ′′ ⊆ G)

≤ |H | ·

(
k
i

)(
n−k
k− i

)

hp2l p−il /k h =
k!

|Aut(H)|

≤ |H | ·c1nk−ihp2l (γn−k/l )−il /k

= µ·c1nk−ihplγ−il /kni

= µ·c1nkhpl γ−il /k

= µc2

(
n
k

)

h
︸ ︷︷ ︸

|H |

pl γ−il /k

= µ2 ·c2γ−il /k

≤ µ2 ·c2γ−l/k.
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Thus, denotingc3 = kc2, we get the estimate

E[X2]

µ2 =

(
A0

µ2 +
∑i Ai

µ2

)

≤ 1+c3γ−l/k

and hence

σ2

µ2 =
E[X2]−µ2

µ2 ≤ c3γ−l/k −−→
γ→∞

0.

Hence, ifp(n) = γnn−k/l for γn → ∞, then by Lemma 7.10X(G) > 0 holds for
almost everyG∈ G (n, p) for largen.2

Corollary 7.12 For k ≥ 3, the property of containing a k-cycle has threshold
t(n) = n−1. (Note: independent of k)2

Corollary 7.13 For k ≥ 2, the property of containing a specific tree structure T
on k nodes has threshold function t(n) = n−k/(k−1). 2

Corollary 7.14 For k≥2, the property of containing a k-clique (≈Kk) has thresh-
old function t(n) = n−2/(k−1). 2

Denoteδ∗(H) = max{δ(H ′)|H ′ is subgraph ofH}.

Theorem 4.11’ The graph property “G has a subgraph isomorphic to H” has
threshold function n−1/δ∗(H). 2

Threshold functions for global graph properties

Also known as “the phase transition”.

The “epochs of evolution”: Consider the structure of randomgraphsG∈ G (n, p),
asp= p(n) increases. The following results can be shown (note thatnp= average
node degree):

0. If p≺ n−2, then a.e.G is empty.

1. If n−2 ≺ p≺ n−1, then a.e.G is a forest (a collection of trees).

• The threshold for the apperarance of anyk-node tree structure isp =
n−k/(k−1).


