
Part II

Combinatorial Models

5 A Sketch of Basic Statistical Physics

Statistical physics = Thermodynamics (macroscopic)

+ Statistical mechanics (microscopic)

5.1 Thermodynamics

A thermodynamic system is characterised by (macroscopic, observable) variables
T (“temperature”) and X1, . . . ,Xn. These variables determine “all interesting”
properties of the system.

E.g. in the classical ideal gas model a sufficient set of variables is T , p, V and N.
(N ∼ the number of molecules is here for simplicity thought of as a continuous
quantity. This might be easier if N was replaced by n = N/N0, the amount in
moles of gas, where N0 = 6.02 ·1023 is Avogadro’s number.)

The system is in (thermal) equilibrium if it satisfies a characteristic state equation

g(T,X1, . . . ,Xn) = 0

E.g. ideal gas: pV−NkT = 0, where k = 1.38 ·10−23J/K is Boltzmann’s constant,
or pV −nRT = 0, where R = 8.32J/K is the gas constant.

A potential or energy function for the system is some sufficiently smooth function

F = F(T,X1, . . . ,Xn).
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56 Part II. Combinatorial Models

In classical thermodynamics, a key role is given to the total energy function de-
termined by the First Law of Thermodynamics:

dU = dQ+dW, (1)

where dQ is the amount of “heat” added to a system and dW is the amount of
“work” performed on it.

Integrating the potential given e.g. the state equation of the ideal gas yields

U(T, p,N) = U0 +

(
1
2

f N +N−S0

)
(T −T0)−NT ln

((
T
T0

)1+ f /2 p0

p

)
,

where U0,S0,T0 and p0 are reference values and f/2 a constant (“specific heat”).1

In classical thermodynamics, the system variables are divided into extensive and
intensive, depending on whether their values depend on the “size” of the system
or not. E.g. T and p are intensive, V and N extensive.

Two systems at the same temperature may be “combined”, and if F is otherwise a
function of extensive variables only, then it is linear, i.e.

F(T,X1 +X ′1, . . . ,Xn +X ′n) = F(T,X1, . . . ,Xn)+F(T,X ′1, . . . ,X
′
n).

By the total derivative formula:

dF =

(
∂F
∂T

)
dT +

n

∑
i=1

(
∂F
∂Xi

)
dXi. (2)

State variables are conjugate (with respect to F), if

X =
∂F
∂Y

or Y =
∂F
∂X

.

In classical thermodynamics conjugates of extensive variables are intensive, and
vice versa. The conjugate of T w.r.t. U ,

S =
∂U
∂T

is called the entropy of the system.

1To be precise, since T and p are not “natural” variables of the energy function U arising from
its differential definition (1), this equation refers to a variant of U expressed in terms of T , p and
N, so called “Gibbs free energy”.
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Conjugate variables may be interchanged via the Legendre transform, yielding
new forms of a given potential function. E.g. in the case of the ideal gas with
fixed N, U = U(S,V) and

dU = dQ+dW = T dS− pdV.

Here we may interchange S for T by considering instead of U the Helmholz free
energy F = U−ST . This satisfies:2

dF = dU−SdT −T dS = T dS− pdV −SdT −T dS =−SdT − pdV.

In the classical setting, it is a law of nature (the Second Law of Thermodynamics)
that in equilibrium processes (evolutions) entropy never decreases:

dS≥ 0.

Processes for which entropy stays constant (dS = 0) are called adiabatic.

5.2 Statistical Mechanics

Let us consider a thermodynamic energy function framed in terms of extensive
variables:

U = U(S,X1, . . . ,Xn),

and assume that the value of U expresses in fact only the average of a large number
of microscopic potentials:

U = 〈H〉= ∑
ω

pωH(ω).

The micropotential function H(ω) is also called the Hamiltonian of the system.
We shall furthermore assume, motivated by the additivity of U , that the Hamilto-
nian of a system consisting of two independent subsystems at thermal equilibrium
can be decomposed as:

H(〈ω1,ω2〉) = H(ω1)+H(ω2).

What is now the distribution of the microstates pω, given the constraint that 〈H〉=
U? We assume that all microstates with the same value of the Hamiltonian are
equally probable, so that pω has the form pω = g(H(ω)).

2There is an unfortunate sign difference here as compared to formula (2). We could have fixed
this by defining F = ST −U , but this would have been against convention.
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Figure 1: A heat bath.

To further specify the functional form of the distribution, think of our system S
as being in thermal equilibrium with, but otherwise independent of, a much larger
system or “reservoir” R . Denote the total system consisting of S and R by T
(This is called a “heat bath” arrangement; cf. Figure 1.)

For any given system, denote by Ω(u) = |H−1(u)| the number of its microstates
at potential u. (Whether we are referring to S , R or T should always be clear
from the context.) Fix some reference potential level E �U for the total system
T , and observe that by our assumption, all microstates of T with potential E have
the same probability.

Now for every microstate ω of S , there are exactly Ω(E−H(ω)) microstates ωr

of R such that the combined state 〈ω,ωr〉 of T has potential E. Since all of these
are equally probable, it follows that pω ∝ Ω(E−H(ω)). Taking logarithms and
applying Taylor’s formula yields:

ln pω = lnΩ(E−H(ω))+ const.

= lnΩ(E)−
(

∂ lnΩ(E ′)
∂E ′

)

E ′=E
H(ω)+ · · ·

= lnΩ(E)−βH(ω)+ · · · ,

where β = ∂ lnΩ/∂E is a parameter whose value is to be determined later.

Taking exponentials again, we obtain the so called Gibbs (or Boltzmann) distribu-
tion

pω ∝ e−βH(ω) (3)

with normalisation constant (actually, function)

Z = Zβ = ∑
ω

e−βH(ω), (4)
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known as the partition function. (In fact, Z = Z(β,X1, . . . ,Xn).) Now the value of
β is in principle determined implicitly by the condition

〈H〉= 1
Z ∑

ω
e−βH(ω)H(ω) = U,

but we shall obtain a more transparent representation for it below.

The (logarithm of the) partition function (4) can be used to compute several macro-
scopic quantities:

First:

∂ lnZ
∂β

=
1
Z

∂Z
∂β

=
1
Z

∂
∂β ∑

ω
e−βH(ω)

=
1
Z ∑

ω
e−βH(ω) (−H(ω))

= −∑
ω

pωH(ω)

= −U.

Second: Consider an extensive variable Xi and its conjugate µi = ∂U/∂Xi.

∂ lnZ
∂Xi

=
1
Z ∑

ω

∂
∂Xi

e−βH(ω;Xi)

=
1
Z ∑

ω
e−βH(ω;Xi)

(
−β

∂H(ω;Xi)

∂Xi

)

= −β∑
ω

pω
∂H(ω;Xi)

∂Xi

= −β
〈

∂H(ω;Xi)

∂Xi

〉

= −βµi.
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Third:

d lnZ =
∂ lnZ

∂β
dβ+

n

∑
i=1

∂ lnZ
∂Xi

dXi

= −Udβ−β
n

∑
i=1

µidXi

= −d(βU)+βdU−β
n

∑
i=1

µidXi

︸ ︷︷ ︸
βTdS

.

∴ T dS =
1
β

d (lnZ +βU)

∴
1
β

= kT, dS = kd (lnZ +βU) , k =
1

βT
constant

∴
1
β

= kT, S = k lnZ +
U
T

+ const.

∴ β =
1

kT
, −kT lnZ = U−T S = F (Helmholz free energy)

Conversely, let us expand the entropy variable as a microscopic average:

S = k lnZ + kβU

= k lnZ +∑
ω

pωβH(ω)
pω = 1

Z e−βH(ω)

⇒ βH(ω) =− ln(Zpω)

= k

(
lnZ−∑

ω
pω(lnZ + ln pω)

)

= −k∑
ω

pω ln pω. ∑
ω

pω = 1

One more, simplified expression for entropy: partition the range of possible po-
tential values into narrow bands (of width ∆U , say), and denote the number of
microstates falling in band r as

Ω(Ur) =
∣∣∣{ω : Ur ≤ H(ω) < Ur +∆U}

∣∣∣

Then the partition function is approximately

Z ≈∑
r

Ω(Ur)e
−βUr
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In fact, since the number of microstates in a typical system is huge, the microstate
potentials are highly concentrated around the average U = 〈H〉, and so in fact

Z ≈Ω(U)e−βU ,

whence

S =
1
T

(−F +U) = k lnZ +
U
T
≈ k lnU−βkU +

U
T︸ ︷︷ ︸

=0

≈ k lnΩ(U).

6 The Ising Model, Spin Glasses and Neural Net-
works

6.1 The Ising Model

The following model was introduced by Ernst Ising in 1925 to explain magnetism
in materials.

At a microscopic level, Ising’s model system consists of N sites arranged in a lat-
tice, either 1-D, 2-D (N = L2), or maybe even 3-D. At each site i = 1, . . . ,N is
located a magnetic ion or spin pointing either up or down (Si = ±1). Neighbour-
ing sites 〈i j〉 are related by an interaction coefficient Ji j, which in Ising’s model
is uniformly either a positive J > 0 (“ferromagnetic case”) or a nonpositive J ≤ 0
(“antiferromagnetic case”). A system whose internal interactions are all weak
(Ji j ≈ 0) is “paramagnetic”. In addition, there may be an external field h influenc-
ing the orientation of each of the spins. (More generally, one could have separate
fields hi for each spin Si.)

The Hamiltonian of spin state σ = 〈S1, . . . ,SN〉 is

H(σ) =−J ∑
〈i j〉

SiS j−h∑Si,

where the sum is taken over nearest neighbour pairs 〈i j〉 and periodic boundary
conditions are assumed for simplicity.

States σ yielding the global minimum value of H(σ) are called ground states of
the system. For a ferromagnetic system, the ground state has either all Si = +1 if
h > 0, or all Si =−1 if h < 0. If h = 0, these two states are both equally good.
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As a very simple example, let us compute the partition function for a trivial Ising
paramagnet with N spins and J = 0. Denote Ω = {+1,−1}N . Then:

Zβ = ∑
σ∈Ω

e−βH(σ)

= ∑
σ∈Ω

exp(βh∑
i

Si)

= ∑
S1=±1

∑
S2=±1

· · · ∑
SN=±1

eβhS1eβhS2 · · ·eβhSN

=

(

∑
S1=±1

eβhS

)N

coshx =
ex + e−x

2

=
(
2cosh(βh)

)N

Define the (total) magnetisation of state σ as

M(σ) =
N

∑
i=1

Si.

The corresponding thermodynamic average at given β is

〈M〉 =
1
Z ∑

σ∈Ω
M(σ)exp(−βH(σ))

=
1
Z ∑

σ∈Ω

(
∑

i
Si
)

exp(−βH(σ)).

︸ ︷︷ ︸
(F)

However now in fact (F) = ∂Z
∂(βh) , so fortuitously:

〈M〉 =
1
Z

∂Z
∂(βh)

=
∂ lnZ
∂(βh)

= N
∂ ln(2cosh(βh))

∂(βh)

= N
2(∂cosh(βh)/∂(βh))

2cosh(βh)

= N
2sinh(βh)

2cosh(βh)

= N tanh(βh).



6. The Ising Model, Spin Glasses and Neural Networks 63

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

<M>/N

h/kT

Figure 2: Magnetisation of an Ising paramagnet.

Thus the average magnetisation per site or “magnetisation density” of a totally
decoupled Ising paramagnet at external field h and temperature T = 1/kβ equals

〈M〉= tanh

(
h

kT

)
.

A plot of this function is presented in Figure 2.

The ferromagnetic 1-D Ising model is also explicitly solvable with somewhat
more work. The 2-D ferromagnetic case with h = 0 was solved by L. Onsager
in 1944, and in a simpler way by Kasteleyn & Fisher in 1961. The 2-D case with
h 6= 0 and higher dimensions are still open.

6.2 Spin Glasses

Spin glasses generalise the Ising model with more general interactions. Also the
spins may be nonbinary, in which case such models are called Potts glasses.

The general form of the (binary-state) spin glass Hamiltonian is

H(σ) =−∑
〈i j〉

Ji jSiS j−∑
i

hiSi,

where Ji j,hi ∈R. Also the neighbourhood relation may correspond to an arbitrary
graph, not necessary a lattice.

Several varieties of spin glass models have been introduced, e.g.:
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Figure 3: Frustrated spin glass configuration.

• The Sherrington-Kirkpatrick model: Hamiltonian as above, complete inter-
connection graph, coefficients Ji j according to a specific probability distri-
bution.

• The Edwards-Anderson model: Hamiltonian

H(σ) =−∑
〈i j〉

Ji jSiS j,

regular lattice topology (e.g. cubic), Ji j independent Gaussian variables.

A phenomenon that makes spin glass models even less tractable than the Ising
model is frustration. E.g. in the spin glass neighbourhood in Figure 3 there is no
completely “consistent” choice of spin values.

Frustration means that the “landscape” determined by the Hamiltonian can have a
very complicated structure, with large numbers of local minima, and no obvious
location for the globally minimal ground state.

In fact, the problem of determining the ground state of a given SK-spin glass
instance 〈J̄, h̄〉 is NP-complete, even with h̄ = 0.

This can be seen by reduction from the well-known NP-complete MAX CUT
problem: Given a graph G = (V,E), determine the partition V = V1∪V2 that max-

imizes w(V1,V2) =
∣∣∣{(i, j) ∈ E : i ∈V1∧ j ∈V2}

∣∣∣.

The reduction is as follows:

Given a graph G = (V,E), let J̄ be an SK system with sites corresponding to V ,
and Ji j determined by

Ji j =

{
−1, if 〈i, j〉 ∈ E,

0, otherwise.
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Let then C = (V1,V2) be a cut in G, and divide the edges in G corresponding as

E1 = {〈i, j〉 ∈ E : i, j ∈V1},
E2 = {〈i, j〉 ∈ E : i, j ∈V2},
EC = {〈i, j〉 ∈ E : i ∈V1∧ j ∈V2}.

Consider the spin glass state σ determined as

Si =

{
+1, if i ∈V1,
−1, if i ∈V2.

For this,

H(σ) = −∑
〈i j〉

Ji jSiS j = ∑
〈i j〉∈E

SiS j

= ∑
〈i j〉∈E1

SiS j + ∑
〈i j〉∈E2

SiS j + ∑
〈i j〉∈EC

SiS j

= |E1|+ |E2|− |EC|
= |E|−2|EC|
= |E|−2w(C).

Conversely, given any spin glass state σ, one obtains a cut C satisfying w(C) =
1
2 |E|− 1

2H(σ).

Thus, graph cuts and spin glass states correspond one-to-one, with w(C) ∝−H(σ),
and minimizing one is equivalent to maximising the other.

The result means that the SK spin glass ground state problem is in a sense “univer-
sal” difficult problem, i.e. it contains as special cases all the ∼2000 other known
NP-complete problems.

For Ji j > 0 and arbitrary h̄ the problem reduces to network flow, and can be solved
in polynomial time. For planar G and h̄ = 0 the problem also has a polynomial
time algorithm (Fisher 1966 (2-D lattices), Barahona 1982). However, for planar
G with h̄ 6= 0, and for 3-D lattices the problem is NP-complete (Barahona 1982). It
is also NP-complete for every other nonplanar crystal lattice graph (Istrail 2000).
Thus, the dimensionality of the system is not crucial to the complexity of the
ground state problem; the key is rather the planarity of the interconnection graph.

6.3 Neural Networks

John Hopfield proposed, in an influential paper in 1982, to use the SK model as
a basis for “neural associative memories”. The idea is to create an N-site SK
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system whose local potential minima correspond to a set of N-bit vectors to be
stored. These local minima are also stable states of the system’s deterministic
(0-temperature) “Glauber dynamics”. When such a system is initialised at a state
which is “close” to one of the stored stable states, the dynamics (presumably)
tends to return it to the nearby local minimum. Thus small perturbations in the
stable states tend to get corrected, and the system has “error-correcting” or “asso-
ciative” capabilities.

More precisely, the deterministic dynamics of such a system is as follows: at a
given discrete time instant, a randomly (or in a round-robin manner) chosen site k
is updated according to the local rule:

S′k = sgn

(

∑
〈k j〉

Jk jS j +hk

)

︸ ︷︷ ︸
(F)

=





+1, if (F) > 0,
−1, if (F) < 0,
Sk, if (F) = 0,

It can be seen that each time a site changes state, the value of H(σ) decreases:
Assume S′k 6= Sk. Consider

H(σ′)−H(σ) = −∑
〈i j〉

Ji jS
′
iS
′
j−∑

i
hiS
′
i

+∑
〈i j〉

Ji jSiS j +∑
i

hiSi

= −∑
〈k j〉

Jk jS
′
kS j + ∑

〈k j〉
Jk jSkS j−hk(S

′
k−Sk)

= −
(
S′k−Sk

)
︸ ︷︷ ︸

N

(

∑
〈k j〉

Jk jS j +hk

)

︸ ︷︷ ︸
H

< 0,

where H and N have the same sign.

Thus, since the value of H(σ) is lower bounded by

H(σ)≥−∑
〈i j〉
|Ji j|−∑

i
|hi|,

the system converges eventually to a local minimum of its Hamiltonian.
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How should one then craft the interaction coefficients so that a given set of patterns
become stable states of the system’s dynamics? This can in principle be done in
various ways, of which Hopfield proposed the following adaptation of “Hebb’s
rule”:3

Consider first a single pattern σ = (S1, . . . ,SN) ∈ {+1,−1}N and choose J =
σσT − I = [SiS j]i j− I,h = 0. Then the dynamics operates as follows:

sgn(Jσ) = sgn
(
(σσT − I)σ

)
= sgn

(
(||σ2||−1)σ

)
= σ,

i.e. σ is a stable state of the dynamics.

Given then a (smallish) set of patterns σ1, . . . ,σm, choose

J =
m

∑
p=1

σpσT
p −mI

(
or normalised J =

1
m ∑

p
σpσT

p − I

)
.

If the patterns are random, independent identically distributed bit vectors, and
there are only m� N of them, they are “almost orthogonal”, and we may approx-
imate:

sgn(Jσk) = sgn

((
m

∑
p=1

σpσT
p −mI

)
σk

)

= sgn




(||σk||2−m)σk︸ ︷︷ ︸
“signal”

+ ∑
p6=k

≈0︷ ︸︸ ︷
(σT

p σk)σp

︸ ︷︷ ︸
“noise”




= σk,

“with high probability”.

This analysis has been performed rigorously many times under different assump-
tions, and the number of patterns m that can be reliably stored has been estimated
under different criteria. Typically, the “reliable” storage capacity comes out as
m≈ 0.14N . . .0.18N.

The deterministic Glauber dynamics of SK spin glasses has also other computa-
tionally interesting features. One can e.g. show that convergence to a stable state

3In a 1949 book, D. O. Hebb suggested as a basic mechanism of neuronal memory that simul-
taneous activity reinforces the interconnections between neurons. Physiologically this suggestion
is still controversial, but mathematically the idea has been used as a basis of several learning
mechanisms in artificial neural networks.
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can require a number of spin flips that is exponential in N (A. Haken et al. ca.
1989), and that one can in fact embed arbitrary computations in the dynamics
(Orponen 1995). (More precisely, determining whether a given “output spin” is
+1 or −1 in the local minimum reached from a given initial state is a “PSPACE-
complete” problem.)

6.4 The NK Model

Introduced by Stuart Kauffman (ca. 1986) as a “tunable family of fitness land-
scapes”.

A fitness landscape is a triple 〈X ,R, f 〉, where X is the configuration (or state)
space, R⊆ X×X is a neighbourhood relation on X , and f : X →R is a fitness (or
objective) function.

A point x ∈ X is a local optimum (of f on X ) if

f (y)≤ f (x) ∀ yRx

and a global optimum (maximum) if

f (y)≤ f (x) ∀ y ∈ X

Questions of the “ruggedness” of landscapes (correlation structure), number and
height of local optima, sizes of “attraction basins” of local optima with respect to
“hill-climbing” algorithms etc. are of great interest for natural landscapes.

In Kauffman’s NK models, X = AN (usually just X = {0,1}N) and K is a tun-
able neighbourhood size parameter that influences the landscape characteristics,
especially its ruggedness (cf. Figure 4).

The model can be seen as a toy model of “epigenetic interactions in chromo-
somes” — or also a generalisation of the spin glass model.

In Kauffman’s model, a chromosome is a N-vector of loci (genes, “positions”),
each of which has a value from a set of allelles A (usually just A = {0,1}). A
“filled-in” chromosome α ∈ AN is called a genotype.

The fitness of each gene i ∈ {1, . . . ,N} in a genotype α = (a1, . . . ,aN) ∈ AN de-
pends on the allele ai and K other alleles ai

1, . . . ,a
i
K via some local fitness function

f i(α) = f i(ai;ai
1, . . . ,a

i
K), usually normalised so that f i(α) ∈ [0,1]. The total fit-

ness of a genotype α ∈ AN is the normalised sum of its genes’ local fitnesses:

f (α) =
1
N

N

∑
i=1

f i(ai;ai
1, . . . ,a

i
k) ∈ [0,1].


