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Proof. Let Xo =i be arbitrary, and choose Yp according to the stationary distribu-
tion Ttof M. Fix € € (0,1] and lett > t(€). Then for any set of states A:

p(A) = Pr(X € A)
> Prii e AN =M)
> 1-Pr(Y ¢ A) —Pr(X # %)
>Pr(y € A)—¢
=T(A) ¢,

and similarly for the set A= S\ A. Thus
PR —mA) <e VEzt(e),
and because A was chosen arbitrarily, also

dy (p"V, 1) = max|p"V(A) —T(A) <& V> t(e).

Thus t(g) <t(g). o

Example 3.5 Gibbs sampler for graph colourings. Let G = (V,E) be an undi-
rected graph with maximum node degree A. Without loss of generality assume
thatV = {1,...,n}. A g-colouringof Gisamapo:V — {1,....,q} = Q such
that

(i,j) €eE = a(i) #o(j).

According to so called Brooks” Theorem, G has a g-colouring for any g > A+ 1.
(In fact, already for g > A unless G contains a (A + 1)-clique Ka,1 as a compo-
nent.)

For g > A+ 2, one can set up the following Gibbs sampler Markov chain AMto
sample g-colourings of G asymptotically uniformly at random (cf. Example 2.2,
p. 24):

Given a colouring o € QV:
(i) selectanodei €V uniformly at random;

(i) select a legal colour c for i uniformly at random (c is legal for i if c #
o(j)Vier)

(iii) recolour i with colour c (i.e. move from o to ¢, where o’(i) =cand 0’(j) =

o(j) for j #1).
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Let us verify that 2 is regular for g > A+ 2:

1. Irreducibility: Any colouring can be reached from any other by recolouring
the nodes in increasing order; because q > A+ 2 one can avoid conflicts
by if necessary first adjusting the colours at higher-numbered neighbours of
the present node.

2. Aperiodicity: Each colouring has a nonzero self-loop probability, so aperi-
odicity follows from regularity.

It is easy to verify that by reversibility M has as its stationary distribution 11 the
uniform distribution over the set of legal colourings SC QV.

Let us then consider how quickly the chain M converges to T, in terms of the dy
distance. To introduce the ideas, consider first the trivial case E = & (= S=QV).

In this case one can effect a coupling between two copies of A as follows: in a
transition (X, ;) — (X+1, Yi+1):

(i) selectanodei €V uniformly at random;

(i) select a colour ¢ € Q uniformly at random and recolour i with colour c in
both X; and Y;; let the resulting colourings be X1 1 and Y. 1.

Now clearly (X;) and (;) are both faithful copies of M, i.e. the marginal transition
probabilities work out OK:

Pr(Xs1=0"| X% =0,Y%=n) = Pr(o,0),
Pri1=n"[ X =0,%y=n) = Pr(n,n’).

On the other hand, it is clear that the time required for the chains (X;) and (;) to
coalesce is not very much larger than n, because at each step of the coupled chain,
a randomly chosen node is coloured similarly in both (X;) and ().

More precisely, introduce the random variable

Dr = #{i e VIX(i) # % (i)}

ThusDi =0 & X =Y < T <t.
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Furthermore,

D
E(Dy1 | D) =

n—D 1
Ft~(Dt—l)—i— . LD = <1——)~Dt

1 t
= E(Dt | Do) = (1_6) -Dg

1 t
(Mako) pr(Dy > 0 | Do) < E(Dy | Do) < (1— —) n<ne /"

Thus, choosing t > nin 2 suffices to guarantee that Pr(X; # %) < €, which by
Lemma 3.12 implies that the mixing time satisfies 1(¢) < nin 2.

For the general case we need a more complicated coupling, in order to take into
account the constraints on colour choice caused by the edges in E.

We observe that by a simple construction, it is possible to combine two finite state
sets A and B to a single state set C so that there are random variables Xa and Xg
such that

0 Prix=x ={ /A S0
Pr(Xg = X) :{é{|B|, i; S; a
(II) PI’(XA = XB) = %

Denote I'(i) ={j €V | (i,]) € E}, X(i) = colour of node i in colouring X;, and
X(U)={X()|ieU}.
Consider the following coupling (X;,Y;) — (Xt+1, Yi+1):

(i) selectanodei €V uniformly at random;

(ii) select colours cx € Q\ X (I (i)), cy € Q\ Y;(I'(i)) uniformly (but not inde-
pendently) at random, using the joint sample space indicated in (11);

(iii) recolour node i with colour cx in X; to yield X 1; similarly with colour cy
inY; to yield Y.
Denote A=A, = {i eV | X (i) = ¥(i)}. Thus Dy = |A| = [V \ Al.

Now clearly D;1 € {Dy+1,Dt,D;t —1}. Letus compute the probabilities P(Dt1 | D)
for each of these cases:
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(i) Dty1 =Dt +1. In this event the chosen i € A, and cx # cy.

Denote by & = [Q\ X (I(i))|, n = [Q\Y(T'(i))], { = [Q\ (X(F (i) U¥(T (i)))]
the number of legal values for cx, cy, and their overlap, respectively. Thus,
the probability that the same colour is chosen for i in both X1 and Y1 is

¢/max{&,n}. Denote d’(i) = | (i) \ A| (recall thati € A). Then
qg-A<En<{+d(i).

Hence:
ot max{&,n} —d'(i)
Priox =) = SaxEn) = max(gn)
0
q—A

>

and consequently:
1o d(i) m
fr—y < — fr—y
Pr(Diy1 =Dt +1) < ni;q—A RN

where m' = Sicad'(i).
(i1) Diy1 =Dt — 1. In this event the choseni € A, and cx = oy.
Denote &,n, as incase (i), and d”(i) = | (i) N Al. Now

q—-A<En<T+(b-d"(i)).
As in case (i), we obtain:

2 max{&n) — (A-d'(i)

=) = axeny = max(Eng
> 1_A—d”(l) _9-2A+d"(i)
qg—A qg—A

and consequently:

B 1 (gq—2A d"(i)
Pr(Dt+1—Dt—1) > HIGZA( q—A +q—A
g—2A m

where i = 5, 40" (i) = Siead ().
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Denoting for brevity

b=b(n) =

4= CENE

we see that
Pr(Dt+1 =Di+ 1) < b, Pr(Dt+1 =Dt — 1) > abD; + b.

Assume that a > 0, i.e. that q > 2A. Then

E(Dy+1|Dt) < b(Dy+1) + (aDy +b) (Dt — 1) + (1 — aDy — 2b) Dy
= (1—8.)Dt.

Thus, E(Dt) < (1—a)'Dg < (1—a)'n, and hence by Markov’s inequality
Pr(D; >0) < (1—-a)'n<ne &,

Thus Pr(X; #Y;) <efort > %'” g and so by Lemma 3.12, the mixing time of the
chain satisfies

for g > 2A.

4 Exact Sampling with Coupled Markov Chains

In 1996 J. Propp and D. Wilson introduced an intriguing method for producing
samples from a Markov chain exactly according to its stationary distribution. This
exact sampling (or “coupling from the past”) technique eliminates the need to
compute Markov chain convergence rates for quality control: when the algorithm
stops, itis guaranteed to produce a perfect sample. However for slowly converging
chains stopping will take a long time, so convergence rates are still of importance
from the point of view of algorithm efficiency. (There are also some other effi-
ciency caveats in the method besides slow convergence of the simulated chain.
These are discussed below.)

Let M be a regular reversible Markov chain with state set S= {1,...,n}, transi-
tion probability matrix P = (pjj), and stationary distribution Tt



4. Exact Sampling with Coupled Markov Chains 51

Consider an explicit simulation of M by the following method: at each step t, a
uniformly distributed random number R; € [0, 1) is chosen, and the state transition
of M is determined as X1 = S(%, Rt), where

17 ifre [07 pi1)7
. 2, ifre[pi1, pir+ Pi2),
s(i,r)={ |
n, ifre [pi1+...+pi(n,1),1).

It is clear that transition probabilities according to the chain 9 can equivalently
be computed with respect to sequences (R;) and the above deterministic transition
rule, e.g.

where

sU(i,(ro,re,... ,re—1)) = s(s(---s(s(i,ro),r1) -+ ), re_1).
t

Now let us consider the following curious simulation method for the chain 2/,
from further and further away inthe past (t = —T, T =1,2,4,8,...) to the present
(t=0):

Algorithm PW (Propp-Wilson):

setT « 1

generate random numbersr_t,...,r_1 € [0,1) uniformly at random;

(1) simulate the chain M as above, using the random numbers
r_r,...,r_q, fromevery possible initial state X_t € S

if all the simulations lead to the same state Xo = ig, then output ig
and stop;

otherwise generate T more random numbersr_or,...,r_t_1 € [0,1)
uniformly at random;

set T « 2T; goto (2).

For a three-state chain, a run of the PW algorithm might look as illustrated in
Figure 14. Here the algorithm has required two restarts, but the third run from
T = —4 has resulted in all the simulated realisations of the chain coalescing, with
common result ig = 2.

In the following, we shall assume that the PW algorithm always converges with
probability 1. Ensuring this may require some care in verifying that the determin-
istic update rule s(i,r), and the chosen numbering of the Markov chain states do
not interact in a bad way.
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Figure 14: A Propp-Wilson simulation of a 3-state Markov chain.
Theorem 4.1 Let Y be a random variable indicating the eventual output state of
the PW algorithm, under the above assumptions and notations. Then

PrriY =i)=m, ViesS
Proof. Fix some value i € S To prove the Theorem, it suffices to show that for
anye >0

IPre(Y =i) — 15| <e.

So fix an arbitrary € > 0. Since we assume that the PW algorithm terminates with
probability 1, there is some value of T such that

Prr(PW simulation converges for chains of length T) > 1 —¢. (12)

Now consider running the actual chain from time —T to time 0, starting with the
stationary distribution:

Pr(X_1 =i) = T.

In this case, of course also the variable Xg is distributed according to the stationary
distribution:

Prr(Xo=1i) =Ti.
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However, if the coalescence event (12) occurs for a given sequence R of random
numbers, then Xo =Y, and so Prr(Xo # Y) < €. Thus,

PriY=i)—15 = Pr(Y =i)—Pr(Xo=1)
< Pr(Y =i, X0 #1)
< g,

and by a similar argument
5 —Pr(Y =i) <e.

Thus, |Pr(Y =i) — 1| < g, and the claim is proved. o

Note that the PW algorithm cannot be “simplified” by simulating the chains for-
wards from time T = 0 until they coalesce. This yields biased samples.

The PW algorithm as described above still has two shortcomings:

1. The need to store long sequences of random numbers for reuse (can be a
serious problem in long simulations); and

2. The need to simulate the chains starting from all possible initial states (in-
feasible in many applications where the number of system states is expo-
nential in the size of the system itself).

Problem (1) has been addressed in a recent (2000) modification to the algorithm
(“CFTP with read once randomness”) by D. Wilson.

For problem (2), Propp & Wilson (1996) proposed a solution that can be applied
when the states of the system have a suitable partial order C respected by the
update rule.

Specifically, assume that the states of the system to be simulated form a partial
order (S= {01,...,0n},C) with a unique largest element T (“top”) and unique
smallest element L (“bottom”), and satisfying the condition

ocCd = s(o,r)Cs(d,r), Vo,0cSandrel0,1). (13)

Then it suffices to simulate the “top” and “bottom” chains until they couple, since
their coupling implies the coalescence of all the other chains as well (cf. Fig-
ure 15).

This is of course a huge improvement: reducing the simulation of, say, 2" parallel
chains to just 2.
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Figure 15: Coalescence of an ordered Propp-Wilson simulation.
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Figure 16: A one-dimensional random walk with semi-reflecting barriers.

So what systems admit this simplification?

A simple example would be a one-dimensional random walk on the state set
S={1,...,n} with, say, semi-reflecting barriers to ensure regularity of the chain
(Figure 16). Assume the state transition rule is:

s(i.r) = max{i — 1,1}, ifO<r<%,
S I min{i+1,n}, if5<r<1

The the natural ordering of states fulfills the condition (13):

i<j= sir)<s(j,r) Vi,j=1,...,n,re]0,1).

Interestingly, also complicated systems such as the Ising spin glass model admit
such orderings. In the case of the Ising model, the order between states 0,0’ €
{—1,+1}" is determined simply by

cCo if g <o Vvi=1,...,n

Clearly L =(-1,...,—1)and T = (1,...,1) with respect to C, and also condi-
tion (13) can be verified.



