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Proof. Let X0 = i be arbitrary, and choose Y0 according to the stationary distribu-
tion π of M . Fix ε ∈ (0,1] and let t ≥ t(ε). Then for any set of states A:

p(i,t)(A) = Pr(Xt ∈ A)

≥ Pr(Yt ∈ A∧Xt = Yt)

≥ 1−Pr(Yt /∈ A)−Pr(Xt 6= Yt)

≥ Pr(Yt ∈ A)− ε
= π(A)− ε,

and similarly for the set Ā = S \A. Thus

|p(i,t)(A)−π(A)| ≤ ε ∀ t ≥ t(ε),

and because A was chosen arbitrarily, also

dV (p(i,t),π) = max
A⊆S
|p(i,t)(A)−π(A)| ≤ ε ∀ t ≥ t(ε).

Thus τ(ε)≤ t(ε). 2

Example 3.5 Gibbs sampler for graph colourings. Let G = (V,E) be an undi-
rected graph with maximum node degree ∆. Without loss of generality assume
that V = {1, . . . ,n}. A q-colouring of G is a map σ : V → {1, . . . ,q} = Q such
that

(i, j) ∈ E ⇒ σ(i) 6= σ( j).

According to so called Brooks’ Theorem, G has a q-colouring for any q≥ ∆+1.
(In fact, already for q ≥ ∆ unless G contains a (∆ + 1)-clique K∆+1 as a compo-
nent.)

For q ≥ ∆ + 2, one can set up the following Gibbs sampler Markov chain M to
sample q-colourings of G asymptotically uniformly at random (cf. Example 2.2,
p. 24):

Given a colouring σ ∈ QV :

(i) select a node i ∈V uniformly at random;

(ii) select a legal colour c for i uniformly at random (c is legal for i if c 6=
σ( j) ∀ j ∈ Γ(i));

(iii) recolour i with colour c (i.e. move from σ to σ′, where σ′(i) = c and σ′( j) =
σ( j) for j 6= i).
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Let us verify that M is regular for q≥ ∆+2:

1. Irreducibility: Any colouring can be reached from any other by recolouring
the nodes in increasing order; because q ≥ ∆ + 2 one can avoid conflicts
by if necessary first adjusting the colours at higher-numbered neighbours of
the present node.

2. Aperiodicity: Each colouring has a nonzero self-loop probability, so aperi-
odicity follows from regularity.

It is easy to verify that by reversibility M has as its stationary distribution π the
uniform distribution over the set of legal colourings S⊆ QV .

Let us then consider how quickly the chain M converges to π, in terms of the dV

distance. To introduce the ideas, consider first the trivial case E =∅ (⇒ S = QV ).

In this case one can effect a coupling between two copies of M as follows: in a
transition (Xt,Yt)→ (Xt+1,Yt+1):

(i) select a node i ∈V uniformly at random;

(ii) select a colour c ∈ Q uniformly at random and recolour i with colour c in
both Xt and Yt ; let the resulting colourings be Xt+1 and Yt+1.

Now clearly (Xt) and (Yt) are both faithful copies of M , i.e. the marginal transition
probabilities work out OK:

Pr(Xt+1 = σ′ | Xt = σ,Yt = η) = Pr(σ,σ′),
Pr(Yt+1 = η′ | Xt = σ,Yt = η) = Pr(η,η′).

On the other hand, it is clear that the time required for the chains (Xt) and (Yt) to
coalesce is not very much larger than n, because at each step of the coupled chain,
a randomly chosen node is coloured similarly in both (Xt) and (Yt).

More precisely, introduce the random variable

Dt = #{i ∈V |Xt(i) 6= Yt(i)}.

Thus Dt = 0 ⇔ Xt = Yt ⇔ T ≤ t.
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Furthermore,

E(Dt+1 | Dt) =
Dt

n
· (Dt−1)+

n−Dt

n
·Dt =

(
1− 1

n

)
·Dt

⇒ E(Dt | D0) =

(
1− 1

n

)t

·D0

(Markov)
⇒ Pr(Dt > 0 | D0)≤ E(Dt | D0)≤

(
1− 1

n

)t

·n≤ ne−t/n.

Thus, choosing t ≥ n ln n
ε suffices to guarantee that Pr(Xt 6= Yt) ≤ ε, which by

Lemma 3.12 implies that the mixing time satisfies τ(ε)≤ n ln n
ε .

For the general case we need a more complicated coupling, in order to take into
account the constraints on colour choice caused by the edges in E.

We observe that by a simple construction, it is possible to combine two finite state
sets A and B to a single state set C so that there are random variables XA and XB

such that

(i) Pr(XA = x) =

{
1/|A|, x ∈ A,
0, x /∈ A;

Pr(XB = x) =

{
1/|B|, x ∈ B,
0, x /∈ B;

(ii) Pr(XA = XB) =
|A∩B|

max{|A|, |B|} .

(11)

Denote Γ(i) = { j ∈ V | (i, j) ∈ E}, Xt(i) = colour of node i in colouring Xt , and
Xt(U) = {Xt(i) | i ∈U}.
Consider the following coupling (Xt ,Yt)→ (Xt+1,Yt+1):

(i) select a node i ∈V uniformly at random;

(ii) select colours cX ∈ Q \Xt(Γ(i)), cY ∈ Q \Yt(Γ(i)) uniformly (but not inde-
pendently) at random, using the joint sample space indicated in (11);

(iii) recolour node i with colour cX in Xt to yield Xt+1; similarly with colour cY

in Yt to yield Yt+1.

Denote A = At = {i ∈V | Xt(i) = Yt(i)}. Thus Dt = |Ā|= |V \A|.
Now clearly Dt+1 ∈{Dt +1,Dt ,Dt−1}. Let us compute the probabilities P(Dt+1 |Dt)
for each of these cases:
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(i) Dt+1 = Dt +1. In this event the chosen i ∈ A, and cX 6= cY .

Denote by ξ = |Q\Xt(Γ(i))|, η = |Q\Yt(Γ(i))|, ζ = |Q\(Xt(Γ(i))∪Yt(Γ(i)))|
the number of legal values for cX , cY , and their overlap, respectively. Thus,
the probability that the same colour is chosen for i in both Xt+1 and Yt+1 is
ζ/max{ξ,η}. Denote d′(i) = |Γ(i)\A| (recall that i ∈ A). Then

q−∆≤ ξ,η≤ ζ+d′(i).

Hence:

Pr(cX = cY ) =
ζ

max{ξ,η} ≥
max{ξ,η}−d′(i)

max{ξ,η}

≥ 1− d′(i)
q−∆

and consequently:

Pr(Dt+1 = Dt +1)≤ 1
n ∑

i∈A

d′(i)
q−∆

=
m′

(q−∆)n
,

where m′ = ∑i∈A d′(i).

(ii) Dt+1 = Dt−1. In this event the chosen i ∈ Ā, and cX = cY .

Denote ξ,η,ζ as in case (i), and d ′′(i) = |Γ(i)∩A|. Now

q−∆≤ ξ,η≤ ζ+(∆−d′′(i)).

As in case (i), we obtain:

Pr(cX = cY ) =
ζ

max{ξ,η} ≥
max{ξ,η}− (∆−d′′(i))

max{ξ,η}

≥ 1− ∆−d′′(i)
q−∆

=
q−2∆+d′′(i)

q−∆

and consequently:

Pr(Dt+1 = Dt−1) ≥ 1
n ∑

i∈Ā

(
q−2∆
q−∆

+
d′′(i)
q−∆

)

=
q−2∆

(q−∆)n
Dt +

m′

(q−∆)n
,

where m′ = ∑i∈Ā d′′(i) = ∑i∈A d′(i).
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Denoting for brevity

a =
q−2∆

(q−∆)n
, b = b(m′) =

m′

(q−∆)n
,

we see that

Pr(Dt+1 = Dt +1)≤ b, Pr(Dt+1 = Dt−1)≥ aDt +b.

Assume that a > 0, i.e. that q > 2∆. Then

E(Dt+1|Dt) ≤ b(Dt +1)+(aDt +b)(Dt−1)+(1−aDt−2b)Dt

= (1−a)Dt.

Thus, E(Dt)≤ (1−a)tD0 ≤ (1−a)tn, and hence by Markov’s inequality

Pr(Dt > 0)≤ (1−a)tn≤ ne−at .

Thus Pr(Xt 6= Yt)≤ ε for t ≥ 1
a ln n

ε , and so by Lemma 3.12, the mixing time of the
chain satisfies

τ(ε)≤ q−∆
q−2∆

·n ln
n
ε
≤ (∆+1)n ln

n
ε

for q > 2∆.

4 Exact Sampling with Coupled Markov Chains

In 1996 J. Propp and D. Wilson introduced an intriguing method for producing
samples from a Markov chain exactly according to its stationary distribution. This
exact sampling (or “coupling from the past”) technique eliminates the need to
compute Markov chain convergence rates for quality control: when the algorithm
stops, it is guaranteed to produce a perfect sample. However for slowly converging
chains stopping will take a long time, so convergence rates are still of importance
from the point of view of algorithm efficiency. (There are also some other effi-
ciency caveats in the method besides slow convergence of the simulated chain.
These are discussed below.)

Let M be a regular reversible Markov chain with state set S = {1, . . . ,n}, transi-
tion probability matrix P = (pi j), and stationary distribution π.
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Consider an explicit simulation of M by the following method: at each step t, a
uniformly distributed random number Rt ∈ [0,1) is chosen, and the state transition
of M is determined as Xt+1 = s(Xt,Rt), where

s(i,r) =





1, if r ∈ [0, pi1),
2, if r ∈ [pi1, pi1 + pi2),
...
n, if r ∈ [pi1 + . . .+ pi(n−1),1).

It is clear that transition probabilities according to the chain M can equivalently
be computed with respect to sequences (Rt) and the above deterministic transition
rule, e.g.

P(t)
i j = Pr(Xt = j|X0 = i) = Pr~R(s(t)(i,~R) = j),

where

s(t)(i,〈r0,r1, . . . ,rt−1〉) = s(s(· · ·s(s︸ ︷︷ ︸
t

(i,r0),r1) · · ·),rt−1).

Now let us consider the following curious simulation method for the chain M ,
from further and further away in the past (t =−T, T = 1,2,4,8, . . .) to the present
(t = 0):

Algorithm PW (Propp-Wilson):

set T ← 1
generate random numbers r−T , . . . ,r−1 ∈ [0,1) uniformly at random;
(1) simulate the chain M as above, using the random numbers

r−T , . . . ,r−1, from every possible initial state X−T ∈ S;
if all the simulations lead to the same state X0 = i0, then output i0

and stop;
otherwise generate T more random numbers r−2T , . . . ,r−T−1 ∈ [0,1)

uniformly at random;
set T ← 2T ; go to (1).

For a three-state chain, a run of the PW algorithm might look as illustrated in
Figure 14. Here the algorithm has required two restarts, but the third run from
T =−4 has resulted in all the simulated realisations of the chain coalescing, with
common result i0 = 2.

In the following, we shall assume that the PW algorithm always converges with
probability 1. Ensuring this may require some care in verifying that the determin-
istic update rule s(i,r), and the chosen numbering of the Markov chain states do
not interact in a bad way.
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Figure 14: A Propp-Wilson simulation of a 3-state Markov chain.

Theorem 4.1 Let Y be a random variable indicating the eventual output state of
the PW algorithm, under the above assumptions and notations. Then

PrR(Y = i) = πi, ∀ i ∈ S.

Proof. Fix some value i ∈ S. To prove the Theorem, it suffices to show that for
any ε > 0

|PrR(Y = i)−πi| ≤ ε.

So fix an arbitrary ε > 0. Since we assume that the PW algorithm terminates with
probability 1, there is some value of T such that

PrR(PW simulation converges for chains of length T )≥ 1− ε. (12)

Now consider running the actual chain from time −T to time 0, starting with the
stationary distribution:

Pr(X−T = i) = πi.

In this case, of course also the variable X0 is distributed according to the stationary
distribution:

PrR(X0 = i) = πi.
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However, if the coalescence event (12) occurs for a given sequence R of random
numbers, then X0 = Y , and so PrR(X0 6= Y )≤ ε. Thus,

Pr(Y = i)−πi = Pr(Y = i)−Pr(X0 = i)

≤ Pr(Y = i,X0 6= i)

≤ ε,

and by a similar argument

πi−Pr(Y = i)≤ ε.

Thus, |Pr(Y = i)−πi| ≤ ε, and the claim is proved. 2

Note that the PW algorithm cannot be “simplified” by simulating the chains for-
wards from time T = 0 until they coalesce. This yields biased samples.

The PW algorithm as described above still has two shortcomings:

1. The need to store long sequences of random numbers for reuse (can be a
serious problem in long simulations); and

2. The need to simulate the chains starting from all possible initial states (in-
feasible in many applications where the number of system states is expo-
nential in the size of the system itself).

Problem (1) has been addressed in a recent (2000) modification to the algorithm
(“CFTP with read once randomness”) by D. Wilson.

For problem (2), Propp & Wilson (1996) proposed a solution that can be applied
when the states of the system have a suitable partial order v respected by the
update rule.

Specifically, assume that the states of the system to be simulated form a partial
order (S = {σ1, . . . ,σn},v) with a unique largest element > (“top”) and unique
smallest element ⊥ (“bottom”), and satisfying the condition

σv σ′ ⇒ s(σ,r)v s(σ′,r), ∀ σ,σ′ ∈ S and r ∈ [0,1). (13)

Then it suffices to simulate the “top” and “bottom” chains until they couple, since
their coupling implies the coalescence of all the other chains as well (cf. Fig-
ure 15).

This is of course a huge improvement: reducing the simulation of, say, 2n parallel
chains to just 2.
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Figure 15: Coalescence of an ordered Propp-Wilson simulation.
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Figure 16: A one-dimensional random walk with semi-reflecting barriers.

So what systems admit this simplification?

A simple example would be a one-dimensional random walk on the state set
S = {1, . . . ,n} with, say, semi-reflecting barriers to ensure regularity of the chain
(Figure 16). Assume the state transition rule is:

s(i,r) =

{
max{i−1,1}, if 0≤ r < 1

2 ,

min{i+1,n}, if 1
2 ≤ r < 1.

The the natural ordering of states fulfills the condition (13):

i≤ j ⇒ s(i,r)≤ s( j,r) ∀ i, j = 1, . . . ,n, r ∈ [0,1).

Interestingly, also complicated systems such as the Ising spin glass model admit
such orderings. In the case of the Ising model, the order between states σ,σ′ ∈
{−1,+1}n is determined simply by

σv σ′ if σi ≤ σ′i ∀ i = 1, . . . ,n.

Clearly ⊥ = (−1, . . . ,−1) and > = (1, . . . ,1) with respect to v, and also condi-
tion (13) can be verified.


