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Figure 11: A simple cyclic random walk.

Example 3.1 Simple cyclic random walk. Consider the regular, reversible Markov
chain described by the graph in Figure 11.

Clearly the stationary distribution is π = [ 1
n ,

1
n , · · · , 1

n ].

The conductance ΦA = FA/CA of a cut (A, Ā) is minimised by choosing A to con-
sist of any n/2 consecutive nodes on the cycle, e.g. A = {1,2, . . . ,n/2}. Then

Φ = ΦA =
FA

CA
=

∑
i∈A
j/∈A

πipi j

∑
i∈A

πi
=

2 · 1
n · 1

4
n
2 · 1

n

=
1/2n
1/2

=
1
n
.

Thus, by Theorem 3.6, the second eigenvalue satisfies:

1− 2
n
≤ λ2 ≤ 1− 1

2n2 ,

by Corollary 3.7, the convergence rate satisfies
(

1− 2
n

)t

≤ ∆(t)≤ n ·
(

1− 1
2n2

)t

,

and by Corollary 3.8, the mixing time satisfies:

1−2/n
2/n

ln
1
ε
≤ τ(ε)≤ 2n2

(
ln

1
ε

+ lnn

)

⇔
(n

2
−1
)
· ln 1

ε
≤ τ(ε)≤ 2n2

(
lnn+ ln

1
ε

)
.

Let us now return to the proof of Theorem 3.6, establishing the connection be-
tween the second-largest eigenvalue and the conductance of a Markov chain. Re-
call the statement of the Theorem:

Theorem 3.6 Let M be a finite, regular, reversible Markov chain and λ2 the
second-largest eigenvalue of its transition probability matrix. Then:
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(i) λ2 ≤ 1− Φ2

2 ,

(ii) λ2 ≥ 1−2Φ.

Proof. (i) The approach here is to bound Φ in terms of the eigenvalue gap of M ,
i.e. to show that Φ2/2≤ 1−λ2, from which the claimed result follows.

Thus, consider the eigenvalue λ = λ2. (The following proof does not in fact de-
pend on this particular choice of eigenvalue λ 6= 1, but since we are proving an
upper bound of the form Φ2/2≤ 1−λ, all other eigenvalues yield weaker bounds
than λ2.)

Let e be a left eigenvector e 6= 0 such that eP = λe. Since e is orthogonal to
π∈ [0,1]n, e must contain both positive and negative components; in fact ∑i ei = 0
as can be seen:

eP = λe ⇔ ∑
i

ei pi j = λe j ∀ j

⇒ ∑
j
∑

i
ei pi j = ∑

i
ei ∑

j
pi j

︸ ︷︷ ︸
=1

= λ∑
j

e j

λ6=1
⇒ ∑

i
ei = 0.

Define A = {i | ei > 0}. Assume, without loss of generality, that π(A) ≤ 1/2.
(Otherwise we may replace e by −e in the following proof.)

Define further a “π-normalised” version of e � A:

ui =

{
ei/πi, if i ∈ A
0, if i /∈ A

Without loss of generality we may again assume that the states are indexed so that
u1 ≥ u2 ≥ . . .≥ ur > ur+1 = . . . = un = 0, where r = |A|.
In the remainder of the proof, the following quantity will be important:

D =

∑
i< j

wi j(u
2
i −u2

j)

∑
i

πiu
2
i

.

We shall prove the following claims:

(a) Φ≤ D,
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(b) D2/2≤ 1−λ,

which suffice to establish our result.

Proof of (a): Denote Ak = {1, . . . ,k}, for k = 1, . . . ,r. The numerator in the
definition of D may be expressed in terms of the ergodic flows out of the Ak as
follows:

∑
i< j

wi j(u
2
i −u2

j) = ∑
i< j

wi j ∑
i≤k< j

(u2
k−u2

k+1)

=
r

∑
k=1

(u2
k−u2

k+1) ∑
i∈Ak
j/∈Ak

wi j

=
r

∑
k=1

(u2
k−u2

k+1)FAk.

Now the capacities of the Ak satisfy π(Ak)≤ π(A)≤ 1/2, so by definition ΦAk ≥
Φ ⇒ FAk ≥ Φ ·π(Ak). Thus,

∑
i< j

wi j(u
2
i −u2

j) =
r

∑
k=1

(u2
k−u2

k+1)FAk

≥ Φ ·
r

∑
k=1

(u2
k−u2

k+1)π(Ak)

= Φ ·
r

∑
k=1

(u2
k−u2

k+1)
k

∑
i=1

πi

= Φ ·
r

∑
i=1

πi

r

∑
k=i

(u2
k−u2

k+1)

= Φ ·∑
i∈A

πiu
2
i .

Hence,

Φ≤
∑
i< j

wi j(u
2
i −u2

j)

∑
i

πiu
2
i

= D.

Proof of (b): We introduce one more auxiliary expression:

E =

∑
i< j

wi j(ui−u j)
2

∑
i

πiu
2
i

,
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and establish that: (b’) D2 ≤ 2E, (b”) E ≤ 1−λ. This will conclude the proof of
Theorem 3.6 (i).

Proof of (b’): Observe first that

∑
i< j

wi j(ui +u j)
2 ≤ 2 ∑

i< j
wi j(u

2
i +u2

j)≤ 2 ∑
i∈A

πiu
2
i .

Then, by the Cauchy-Schwartz inequality:

D2 =




∑
i< j

wi j(u
2
i −u2

j)

∑
i

πiu
2
i




2

≤




∑
i< j

wi j(ui +u j)
2

∑
i

πiu
2
i







∑
i< j

wi j(ui−u j)
2

∑
i

πiu
2
i


≤ 2E.

Proof of (b”): Denote Q = I−P. Then eQ = (1−λ)e and thus

eQuT = (1−λ)euT = (1−λ)
r

∑
i=1

πiu
2
i .

On the other hand, writing eQuT out explicitly:

eQuT =
n

∑
i=1

r

∑
j=1

qi jeiu j qi j =−pi j =−wi j

πi
, i 6= j

≥
r

∑
i=1

r

∑
j=1

qi jeiu j qii = 1− pii = ∑
i6= j

pi j

= −∑
i∈A

∑
j∈A
j 6=i

wi juiu j + ∑
i∈A

∑
j∈A
j 6=i

wi ju
2
i ei = πiui, i ∈ A

= −2 ∑
i< j

wi juiu j + ∑
i< j

wi j(u
2
i +u2

j)

= ∑
i< j

wi j(u
2
i −u2

j).

Thus,

∑
i< j

wi j(ui−u j)
2 = E ·∑

i
πiu

2
i ≤ eQuT = (1−λ) ·∑

i
πiu

2
i ⇒ E ≤ 1−λ.
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(ii) Given the stationary distribution vector π ∈ Rn, define an inner product 〈·, ·〉π
in Rn as:

〈u,v〉π =
n

∑
i=1

πiuivi.

By (a slight modification of) a standard result (the Courant-Fischer minimax the-
orem) in matrix theory, and the fact that P is reversible with respect to π ⇒
〈u,Pv〉π = 〈Pu,v〉π, one can characterise the eigenvalues of P as:

λ1 = max

{〈u,Pu〉π
〈u,u〉π

| u 6= 0

}
,

λ2 = max

{〈u,Pu〉π
〈u,u〉π

| u⊥π π,u 6= 0

}
, etc.

In particular,

λ2 ≥
〈u,Pu〉π
〈u,u〉π

for any u 6= 0 such that ∑
i

πiui = 0. (6)

Given a set of states A ⊆ S, 0 < π(A)≤ 1/2, we shall apply the bound (6) to the
vector u defined as:

ui =





1
π(A)

, if i ∈ A

− 1
π(Ā)

, if i ∈ Ā

Clearly

∑
i

πiui = ∑
i∈A

πi

π(A)
−∑

i∈Ā

πi

π(Ā)
= 1−1 = 0, and

〈u,u〉π = ∑
i

πiu
2
i = ∑

i∈A

πi

π(A)2 + ∑
i∈Ā

πi

π(Ā)2
=

1
π(A)

+
1

π(Ā)
,

so let us compute the value of 〈u,Pu〉π.

The task can be simplified by representing P as P = In− (In−P), and first com-
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puting 〈u,(I−P)u〉π:

〈u,(I−P)u〉π = ∑
i

πiui ∑
j
(I−P)i jui j

= −∑
i

∑
j 6=i

πiui pi ju j +∑
i

∑
j 6=i

πiui pi jui

= ∑
i

∑
j 6=i

πi pi j(u
2
i −uiu j)

= ∑
i< j

πipi j(ui−u j)
2

= ∑
i∈T
j 6=T

πi pi j

(
1

π(A)
+

1
π(Ā)

)2

=

(
1

π(A)
+

1

π(Ā)

)2

FA.

Thus,

λ2 ≥
〈u,Pu〉π
〈u,u〉π

=
1

〈u,u〉π

(
〈u,u〉π−〈u,(I−P)u〉π

)

= 1− 1
〈u,u〉π

· 〈u,(I−P)u〉π

= 1−
(

1
π(A)

+
1

π(Ā)

)−1( 1
π(A)

+
1

π(Ā)

)2

·FA

= 1−
(

1
π(A)

+
1

π(Ā)

)
·FA

≥ 1− 2
π(A)

·FA = 1−2ΦA.

Since the bound (7) holds for any A⊆ S such that 0 < π(A)≤ 1/2, it follows that
it holds also for the conductance

Φ = min
0<π(A)≤1/2

ΦA.

Thus, we have shown that λ2 ≥ 1−2Φ, which completes the proof. 2

Despite the elegance of the conductance approch, it can be sometimes (often?)
difficult to apply in practice – computing graph conductance can be quite difficult.
Also the bounds obtained are not necessary the best possible; in particular the
square in the upper bound λ2 ≤ 1−Φ2/2 is unfortunate.
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An alternative approch, which is sometimes easier to apply, and can even yield
better bounds, is based on the construction of so called “canonical paths” between
states of a Markov chain.

Consider again a regular, reversible Markov chain with stationary distribution π,
represented as a weighted graph with node set S and edge set E = {(i, j) | pi j > 0}.
The weight we associated to edge e = (i, j) corresponds to the ergodic flow πi pi j

between states i and j.

Specify for each pair of states k, l ∈ S a canonical path γkl connecting them. The
paths should intuitively be chosen as short and as nonoverlapping as possible. (For
precise statements, see Theorems 3.9 and 3.11 below.)

Denote Γ = {γkl | k, l ∈ S} and define the unweighted and weighted maximum
edge loading induced by Γ as:

ρ = ρ(Γ) = max
e∈E

1
we

∑
γkl3e

πkπl

ρ̄ = ρ̄(Γ) = max
e∈E

1
we

∑
γkl3e

πkπl|γkl|,

where |γkl| is the length (number of edges) of path γkl . Note that here the edges
are considered to be oriented, so that only paths crossing an edge e = (i, j) in the
direction from i to j are counted in determining the loading of e.

Theorem 3.9 For any regular, reversible Markov chain and any choice of canon-
ical paths,

Φ≥ 1
2ρ

.

Proof. Represent the chain as a weighted graph G, where the weight on edge
e = (i, j) corresponds to the ergodic flow between states i and j:

wi j = πi pi j = π j p ji

Every set of states A⊆ S determines a cut (A, Ā) in G, and the conductance of the
cut corresponds to its relative weight:

ΦA =
w(A, Ā)

π(A)
=

1
π(A) ∑

i∈A, j∈Ā

wi j.

Let then A be a set with 0 < π(A)≤ 1
2 that minimises ΦA, and thus has ΦA = Φ.

Assume some choice of canonical paths Γ = {γi j}, and assign to each path γi j a
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“flow” of value πiπ j. Then the total amount of flow crossing the cut (A, Ā) is

∑
i∈A, j∈Ā

πiπ j = π(A)π(Ā),

but the cut edges (edges crossing the cut) have only total weight w(A, Ā). Thus,
some cut edge e must have loading

ρe =
1

we
∑

γi j3e
πiπ j ≥

π(A)π(Ā)

w(A, Ā)
≥ π(A)

2w(A, Ā)
=

1
2Φ

.

The result follows. 2

Corollary 3.10 With notations and assumptions as above,

λ2 ≤ 1− 1
8ρ2 .

Proof. From Theorems 3.6 and 3.9. �

A more advanced proof yields a tighter result:

Theorem 3.11 With notations and assumptions as above:

(i) λ2 ≤ 1− 1
ρ̄

(ii) ∆(t)≤ (1−1/ρ̄)t

min
i∈A

πi

(iii) τ(ε)≤ ρ̄
(

ln
1
ε

+ ln
1

πmin

)
.2

Example 3.2 Cyclic random walk. Let us consider again the cyclic random walk
of Figure 11. Clearly the stationary distribution is π = [ 1

n , 1
n , · · · , 1

n ], and the er-
godic flow on each edge e = (i, i±1) is

we = πi pi,i±1 =
1
n
· 1

4
=

1
4n

.

An obvious choice for a canonical path connecting nodes k, l is the shortest one,
with length

|γkl|= min{|l− k|, |l− k +n|, |k− l +n|}.
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Figure 12: Transition graph for three-element permutations.

It is fairly easy to see that each (oriented) edge is now travelled by 1 canonical
path of length 1, 2 of length 2, 3 of length 3, . . . , n

2 of length n
2 (actually the last

one is just an upper bound). Thus:

ρ = max
e

1
we

∑
γkl3e

πkπl|γi j| ≤ 4n
n/2

∑
r=1

1
n2 · r

2

=
4
n
· 1

6
· n

2
·
(n

2
+1
)
· (n+1) =

1
6

(n+1)(n+2)

⇒
τ(ε) ≤ 1

6 (n+1)(n+2)
(
ln n+ ln 1

ε
)

= 1
6 n2
(
ln n+ 1

ε
)
+O

(
n
(
ln n+ 1

ε
))

.

Example 3.3 Sampling permutations. Let us consider the Markov chain whose
states are all possible permutations of [n] = {1,2, . . . ,n}, and for any permutations
s, t ∈ Sn:

pst =





1
2 , if s = t,
1
2 ·
(n

2

)−1
, if s can be changed to t by transposing two elements,

0, otherwise

Thus, e.g. for n = 3 we obtain the transition graph in Figure 12.

Clearly, the stationary distribution for this chain is π =
[ 1

n! ,
1
n! , . . . ,

1
n!

]
, and the

ergodic flow on each edge τ = (s, t), with s 6= t, pst > 0, is:

wτ = πs pst =
1
n!
· 1

2
·
(

n
2

)−1

.

A natural canonical path connecting permutation s to permutation t is now ob-
tained as follows:

s = s0→ s1→ s2→ ··· → sn−1 = t.
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where at each sk,sk(k) = t(k). (Thus, each sk matches t up to element k, sk(1 . . .k) =
t(1 . . .k).)

Thus, e.g. the canonical path connecting s = (1234) to t = (3142) is as follows:

(1234)→
ω︷ ︸︸ ︷

(3|214)
τ→

ω′︷ ︸︸ ︷
(31|24)→ (314|2).

Now let us denote the set of canonical paths containing a given transition τ : ω→
ω′ by Γ(τ). We shall upper bound the size of Γ(t) by constructing an injective
mapping στ : Γ(τ)→ Sn. Obviously, the existence of such a mapping implies that
|Γ(τ)| ≤ n!.

Suppose τ transposes locations k +1 and l, k +1 < l, of permutation ω. Then for
any 〈s, t〉 ∈ Γ(τ), define the permutation z = στ(s, t) as follows:

1. Place the elements in ω(1 . . .k) in the locations they appear in s. (Note that
permutation ω is given and fixed as part of τ.)

2. Place the remaining elements in the remaining locations in the order they
appear in t

Thus, for example in the above example case:

στ(〈1234〉,〈3142〉)→ ( 3 )→ (1432)︸ ︷︷ ︸
z

ω = (3|214), k = 1

Why is this mapping an injection, i.e. how do we recover s and t from a knowledge
of τ and z = στ(s, t)? The reasoning goes as follows:

1. t = ω(1 . . .k)+ “other elements in same order as in z”

2. s = “elements in ω(1 . . .k) at locations indicated in z” + “other elements in
locations deducible from the transposition path s = s0→ s1→···→ sk = ω”

This is somewhat tricky, so let us consider an example. Say ω = (3 1|2 4),
k = 2, z = (1 4 3 2). Then:

1. t = (3 1| )+( |4 2) = (3 1|4 2)
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2.

s = s0 = (1 3 ) s0 = (1 3 )
s1 = (3| ) ⇒ s1 = (3| 2 1 )

ω = s2 = (3 1| 2 4) s2 = (3 1| 2 4)
∴ s = s0 = (1 2 3 4) s0 = (1 2 3 4)

s1 = (3| 2 1 4) ⇒ s1 = (3| 2 1 4)
ω = s2 = (3 1| 2 4) s2 = (3 1| 2 4)

Thus, we know that for each transition τ,

|Γ(τ)| ≤ n!

We can now obtain a bound on the unweighted maximum edge loading induced
by our collection of canonical paths:

ρ = max
τ∈E

1
qτ

∑
〈s,t〉∈Γ(τ)

πsπt ≤
(

1
n!
· 1

2
·
(

n
2

)−1
)−1

·n! ·
(

1
n!

)2

= 2n!

(
n
2

)
·n! · ( 1

n!
)2 = 2 ·

(
n
2

)
= n(n−1).

By Theorem 3.9, the conductance of this chain is thus Φ≥ 1
2n(n−1) , and by Corol-

lary 3.8, its mixing time is thus bounded by

τn(ε) ≤
2

Φ2

(
ln

1
ε

+ ln
1

πmin

)
≤ 2(2n(n−1))2

(
ln

1
ε

+ lnn!

)

= O

(
n4
(

n lnn+ ln
1
ε

))
.

3.2 Coupling

An important “classical” approach to obtaining convergence results for Markov
chains is the coupling method. As a simple case, let M = (X0,X1, . . .) and N =
(Y0,Y1, . . .) be two independent Markov chains with the same state space S =
{1, . . . ,n} and the same regular transition probability matrix P = (pi j), and con-
sequently the same stationary distribution π.

Thus, if one considers the Markov chain M ×N with random variables Zt =
(Xt,Yt), one obtains transition probabilities

pZ
i j,kl = Pr(Zt = (k, l) | Zt−1 = (i, j))

= Pr(Xt = k | Xt−1 = i) ·Pr(Yt = l | Yt−1 = j)

= pik p jl.
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Moreover, since M and N are regular with stationary distribution π, then so is
M ×N with stationary distribution πZ = πT π (i.e. πZ

i j = πiπ j).

Note once more that “projected” (marginalised) to its first or the second compo-
nent, M ×N yields realisations of the same process, i.e.

Pr(Zt = (k,∗) | Z0 = (k0, l0)) = Pr(Xt = k | X0 = k0)

= p(t)
k0k, independent of l0;

Pr(Zt = (∗, l) | Z0 = (k0, l0)) = Pr(Yt = l | Y0 = l0)

= p(t)
l0l , independent of k0.

(7)

Now define a random variable T that for any realisation of M ×N indicates the
first time at which Xt and Yt have the same value, i.e. their coupling time:

T = inf{t ≥ 0|Xt = Yt}.

One can in fact modify the chain M ×N so that after coupling the X - and Y -
components not just have the same distributions, but in fact strictly the same val-
ues (i.e. Xt = Yt ∀ t ≥ T ), yet the marginal properties (7) stay the same. Simply
define X ′t = (X ′t ,Yt), where

X ′t =

{
Xt, t < T,
Yt , t ≥ T.

Let us denote the resulting nonhomogeneous chain by M |N . Now the projections
of M |N to its X - and Y -components are surely not independent, but viewed in
isolation, as marginals of M |N , they have exactly the same stochastic properties.

In particular, in a coupled chain M |N , let us choose an arbitrary initial state
X0 = k0 for M , and similarly Y0 = l0 for N , and denote the respective time t

distributions as p(t) = (p(t)
k0k)k and q(t) = (p(t)

l0l)l. Then for any A⊆ S:

p(t)(A) = Pr(Xt ∈ A)

≥ Pr(Yt ∈ A∧Xt = Yt)

= 1−Pr(Yt /∈ A∨Xt 6= Yt)

≥ 1−Pr(Yt /∈ A)−Pr(Xt 6= Yt)

= Pr(Yt ∈ A)−Pr(t < T )

= q(t)(A)−Pr(t < T ),
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0 t

n/2

n/2

Figure 13: A realisation of the (Dt) chain.

i.e. q(t)(A)− p(t)(A)≤ Pr(t < T ). A similar argument shows that also p(t)(A)−
q(t)(A)≤ Pr(t < T ), and so for any A⊆ S, |p(t)(A)−q(t)(A)|≤ Pr(T > t), implying
that

dV (p(t),q(t)) = sup
A⊆S
|p(t)(A)−q(t)(A)| ≤ Pr(T > t). (8)

Since the coupling bound (8) holds for arbitrary pairs of initial states, it also holds
for arbitrary initial distributions, wwhen the bounding probability Pr(T > t) is
computed with respect to these distributions.

In particular, if the initial state of the chain Y is chosen according to the stationary
distribution π, then q(t) = π for all t ≥ 0, and one obtains the convergence bound:

dV (p(t),π) =
1
2 ∑

i
|p(t)

i −πi| ≤ Pr(T > t). (9)

Example 3.4 Cyclic random walk. Consider again the cyclic random walk of
Figure 11 with n states, n even. To obtain an upper bound on the coupling proba-
bility Pr(T > t), consider two independent copies (Xt), (Yt) of the walk, initiated
at X0 = 1 and Y0 = n

2 +1.

Denote Dt = Yt−Xt− n
2 . Then D0 = 0,

Dt+1 =





Dt−2 with prob. 1/16,
Dt−1 with prob. 1/4,
Dt with prob. 3/8,
Dt +1 with prob. 1/4,
Dt +2 with prob. 1/16,

and T = inf{t|Dt =±n
2} (cf. Figure 13). Thus,

Pr(T > t) = Pr(|Di|<
n
2
∀ i = 0,1, . . . , t).
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To get a very rough upper bound on this probability one can observe that if from
any initial state Dk >−n

2 there are n consequent increases, then it must be the case
that Dk+n > n

2 . The probability of this event is

r = Pr(Dk+n ≥ Dk +n)≥ 1
4n .

Consequently,

Pr(T > t) = Pr
(
|Di|<

n
2
∀ i = 0,1, . . . , t

)
≤ (1− r)bt/nc.

Thus, we obtain a geometric bound on the convergence rate of this walk:

dV (p(t),π)≤ (1−4−n)bt/nc.

(However, the constants in the bound are not very good. A more careful analysis
of the process (Dt) would surely yield better bounds.)

More generally, a coupling of two Markov chains (Xt) and (Yt) (or any stochastic
processes) is a process Zt = (X ′t ,Y

′
t ) that has (Xt) and (Yt) as its marginal distribu-

tions.

In the case of finite Markov chains this means that:

Pr(X ′t+1 = k|X ′t = i,Y ′t = j) = Pr(Xt+1 = k|Xt = i) = pX
ik,

Pr(Y ′t+1 = l|X ′t = i,Y ′t = j) = Pr(Xt+1 = l|Yt = j) = pY
jl.

(10)

The coupling conditions (10) are trivially satisfied by the independent coupling,
where pZ

i j,kl = pX
ik pY

jl , but the more interesting couplings are the non-independent
ones.

In the following Lemma, and also later in this section, mixing times are considered
with respect to the total variation distance, i.e. for now

τ(ε) = τV (ε) = min
{

t | dV (p(i,s),π)≤ ε ∀ s≥ t and ∀ initial states i
}

.

Lemma 3.12 (“Coupling lemma”) Let M be a finite, regular Markov chain and
Zt = (Xt,Yt), t ≥ 0, a coupling of two copies of M (i.e. (Zt) is a Markov chain
whose X- and Y -marginals satisfy the coupling conditions (10) with respect to the
transition probabilities of M ). Suppose further that t : (0,1]→ N is a function
such that given any ε ∈ (0,1], Pr(Xt 6= Yt) ≤ ε holds for all t ≥ t(ε), uniformly
over the choice of the initial state (X0,Y0). Then the mixing time τ(ε) of M is
bounded above by t(ε).
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Proof. Let X0 = i be arbitrary, and choose Y0 according to the stationary distribu-
tion π of M . Fix ε ∈ (0,1] and let t ≥ t(ε). Then for any set of states A:

p(i,t)(A) = Pr(Xt ∈ A)

≥ Pr(Yt ∈ A∧Xt = Yt)

≥ 1−Pr(Yt /∈ A)−Pr(Xt 6= Yt)

≥ Pr(Yt ∈ A)− ε
= π(A)− ε,

and similarly for the set Ā = S \A. Thus

|p(i,t)(A)−π(A)| ≤ ε ∀ t ≥ t(ε),

and because A was chosen arbitrarily, also

dV (p(i,t),π) = max
A⊆S
|p(i,t)(A)−π(A)| ≤ ε ∀ t ≥ t(ε).

Thus τ(ε)≤ t(ε). 2

Example 3.5 Gibbs sampler for graph colourings. Let G = (V,E) be an undi-
rected graph with maximum node degree ∆. Without loss of generality assume
that V = {1, . . . ,n}. A q-colouring of G is a map σ : V → {1, . . . ,q} = Q such
that

(i, j) ∈ E ⇒ σ(i) 6= σ( j).

According to so called Brooks’ Theorem, G has a q-colouring for any q≥ ∆+1.
(In fact, already for q ≥ ∆ unless G contains a (∆ + 1)-clique K∆+1 as a compo-
nent.)

For q ≥ ∆ + 2, one can set up the following Gibbs sampler Markov chain M to
sample q-colourings of G asymptotically uniformly at random (cf. Example 2.2,
p. 24):

Given a colouring σ ∈ QV :

(i) select a node i ∈V uniformly at random;

(ii) select a legal colour c for i uniformly at random (c is legal for i if c 6=
σ( j) ∀ j ∈ Γ(i));

(iii) recolour i with colour c (i.e. move from σ to σ′, where σ′(i) = c and σ′( j) =
σ( j) for j 6= i).


