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Figure 10: Hard-core colouring of a lattice.

2 Markov Chain Monte Carlo Sampling

We now introduce Markov chain Monte Carlo (MCMC) sampling, which is an
extremely important method for dealing with “hard-to-access” distributions.

Assume that one needs to generate samples according to a probability distribution
π, but π is too complicated to describe explicitly. A clever solution is then to
construct a Markov chain that converges to stationary distribution π, let it run
for a while and then sample states of the chain. (However, one obvious problem
that this approach raises is determining how long is “for a while”? This leads to
interesting considerations of the convergence rates and “rapid mixing” of Markov
chains.)

Example 2.1 The hard-core model.

A hard-core colouring of a graph G = (V,E) is a mapping

ξ : V →{0,1} (“empty” vs. “occupied” sites)

such that

(i, j) ∈ E ⇒ ξ(i) = 0∨ξ( j) = 0 (no two occupied sites are adjacent)

E.g. on a lattice graph, the hard-core colouring condition models an exclusion
principle, whereby a “particle” at one site excludes the presence of “particles” at
neighbouring sites, cf. Figure 10. In computer science terms, a hard-core colour-
ing of a graph G corresponds to an independent set of nodes from G.

Denote by µG the uniform distribution over all the ZG valid hard-core colourings of
G. We would like to sample colourings according to µG, e.g. in order to compute
the expected number of ones in a valid colouring:

E(n(X)) = ∑
ξ∈{0,1}V

n(ξ)µG(ξ) =
1

ZG
∑

ξ∈{0,1}V
n(ξ)I[ξ is valid],



2. Markov Chain Monte Carlo Sampling 23

where n(ξ) denotes the number of ones in colouring ξ.

However, the combinatorial structure of distribution µG is quite complicated; it is
far from clear how one could pick a random valid hard-core colouring of graph
G. (Even computing their total number ZG is likely to be a so called #P-complete
problem, and thus not solvable in polynomial time unless P = NP.)

Given a graph G = (V,E), V = {1, . . . ,n}, let us consider the following Markov
chain (X0,X1, . . .) on the space of valid hard-core colourings of G:

• Initially choose X0 to be any valid hard-core colouring of G.

• Then, given colouring Xt , generate colouring Xt+1 as follows:

1. Choose some node i ∈V uniformly at random.

2. If all the neighbours of i have colour 0 in Xt , then let Xt+1(i) = 1 with
probability 1/2 and Xt+1(i) = 0 with probability 1/2.

3. At all other nodes j, let Xt+1( j) = Xt( j).

It can be seen that the chain thus determined is irreducible (since all colourings
communicate via the all-zeros colouring) and aperiodic (since for any colouring
ξ, Pξξ > 0).

To see that the chain has µG as its unique stationary distribution, it suffices to
check the detailed balance conditions with respect to µG. Let ξ,ξ′ be two different
colourings. If they differ at more than one node, then Pξξ′ = Pξ′ξ = 0, so it suffices
to check the case where ξ(i) 6= ξ′(i) at a single node i. But then

µG(ξ)Pξξ′ =
1

ZG
· 1

n
· 1

2
= µG(ξ′)Pξ′ξ.

The above hard-core sampling algorithm is a special case of a Gibbs sampler for
a target distribution π on a state space of the form S = CV .

The general principle is to choose in step 2 of the state update rule the new value
for Xt+1(i) according to the conditional π-distribution:

PrMC(Xt+1(i) = c) = Prπ(ξ(i) = c | ξ( j) = Xt( j), j 6= i).

(In addition, the chain needs to be initialised in a state X0 that has nonzero π-
probability.) It can be seen that the chain so obtained is aperiodic and has π as
a stationary distribution. Whether the chain is also irreducible depends on which
states ξ have nonzero π-probability.



24 Part I. Markov Chains and Stochastic Sampling

Example 2.2 Sampling graph k-colourings. Let G = (V,E) be a graph. The fol-
lowing is a Gibbs sampler for the uniform distribution in the space S = {1, . . . ,k}V

of k-colourings of G:

• Initially choose X0 to be any valid k-colouring of G. (Of course, finding a
valid k-colouring is an NP-complete problem for k≥ 3, but let us not worry
about that).

• Then, given colouring Xt , generate colouring Xt+1 as follows:

1. Choose some node i ∈V uniformly at random.

2. Let C′ be the set of colours assigned by Xt to the neighbours of i:

C′ = {Xt( j) | (i, j) ∈ E}.

(Note that |C′|< k.) Choose a colour for Xt+1(i) uniformly at random
from the set {1, . . . ,k}\C′.

3. At all other nodes j, let Xt+1( j) = Xt( j).

Note that it is a nontrivial question whether this chain is irreducible or not.

Another general family of MCMC samplers are the Metropolis chains.

Let the state space S have some neighbourhood structure, so that it may be viewed
as a (large) connected graph (S,N). Denote by N(i) the set of neigbours of state i,
and let di = |N(i)|. We assume that the neighbourhood structure is symmetric, so
that i ∈ N( j)if and only if j ∈ N(i).

Then the (basic) Metropolis sampler for distribution π on S operates as follows:

• Initially choose X0 to be some state i ∈ S.

• Then, given state Xt = i, state Xt+1 is obtained as follows:

1. Choose some j ∈ N(i) uniformly at random.

2. With probability min
{

π jdi
πid j

,1
}

, accept Xt+1 = j. Otherwise let Xt+1 =

i.

Thus, fully written out the transition probabilities are:

pi j =





1
di

min

{
π jdi

πid j
,1

}
, if j ∈ N(i)

0, if j /∈ N(i), j 6= i
1− ∑

j∈N(i)

pi j, if j = i
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To show that this chain has π as its stationary distribution, it suffices to check the
detailed balance conditions:

πi pi j = π j p ji ∀ i, j ∈ S.

The conditions are trivial if i = j or j /∈ N(i), so let us consider the case j ∈ N(i).
There are two subcases:

(i) Case π jdi
πid j
≥ 1: Then:





πipi j = πi ·
1
di
·1

π j p ji = π j ·
1
d j
· πid j

π jdi
=

πi

di

(ii) Case π jdi
πid j

< 1: Then:





πipi j = πi ·
1
di
· π jdi

πid j
=

π j

d j

π j p ji = π j ·
1
d j
·1

(Note that in both cases πi pi j = π j p ji = min{πi
di

,
π j
d j
}.) Hence π is a stationary

distribution of the chain.

Furthermore, the chain is guaranteed to be aperiodic if there is at least one i ∈ S
such that π jdi

πid j
< 1 (⇒ pii > 0) i.e. it is not the case that for all i, j ∈ S:

πi

di
=

π j

d j
= const.

In the latter case the chain reduces to a simple random walk on the graph (S,N)
with stationary distribution

π =

[
d1

d
d2

d
· · · dn

d

]

as seen earlier. Such a random walk is aperiodic, if and only if the graph (S,N)
contains at least one odd cycle, i.e. if (S,N) is not bipartite.
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3 Estimating the Convergence Rate of a Markov Chain

3.1 Second Eigenvalue, Conductance, Canonical Paths

Consider a regular Markov Chain on state set S = {1, . . . ,n}, with transition prob-
ability matrix P = (pi j) and stationary distribution π.

We would like to measure the rate of convergence of the chain to π, e.g. in terms
of the total variation distance:

∆(i)
V (t) = dV (π(i,t),π),

where π(i,t)
j = p(t)

i j , and

dV (ρ,π) = max
A⊆S
|ρ(A)−π(A)|= 1

2 ∑
j∈S

|ρ j−π j|.

However, we get somewhat tighter results by using instead of dV the relative point-
wise distance

dU
rp(ρ,π) = max

j∈U

|ρ j−π j|
π j

.

Hence, we define our convergence rate function as:

∆U(t) = max
i∈U

dU
rp(π

(i,t),π) = max
i, j∈U

|p(t)
i j −π j|

π j
.

When we consider convergence over the whole state space, i.e. U = S, we denote
simply:

∆(t) = ∆S(t).

Proposition 3.1 For any two distributions ρ, π, where π j > 0 for all j:

dV (ρ,π)≤ 1
2

drp(ρ,π)≤ 1
min j π j

dV (ρ,π).

Consequently, ∆(i)
V (t)≤ 1

2 ∆(t) for all i, t. 2

Define the mixing time of a given regular chain as

τ(ε) = min{t | ∆(t ′)≤ ε ∀ t ′ ≥ t}.
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In algorithmic applications, the details of the chain are often determined by some
input x, in which case we write ∆x(t), τx(ε) correspondingly.

A chain (more precisely, a family of chains determined by inputs x) is rapidly
mixing if

τx(ε) = poly

(
|x|, ln 1

ε

)
.

Our goal is now to establish some techniques for analysing the convergence rates
of Markov chains and proving them to be rapidly mixing.

Lemma 3.2 A regular Markov chain with transition matrix P and stationary dis-
tribution π is reversible, if and only if the matrix D1/2PD−1/2 is symmetric, where
D1/2 = diag(

√
π1,
√

π2, . . . ,
√

πn).

Proof. D1/2PD−1/2 =
(

D1/2PD−1/2
)T
⇔ DP = PT D.

Inspecting this condition coordinatewise shows that it is exactly the same as the
reversibility condition πipi j = p jiπ j ∀ i, j. 2

Now it is easy to see that the matrix A = D1/2PD−1/2 has the same eigenvalues as
P: if λ is an eigenvalue of P with left eigenvector u, then for the vector v = uD−1/2

we obtain

vA = uD−1/2
(

D1/2PD−1/2
)

= uPD−1/2 = λuD−1/2 = λv.

Since matrix A is symmetric for reversible P, this shows that reversible P have
real eigenvalues. By the Perron-Frobenius theorem they can thus be ordered as

λ1 = 1 > λ2 ≥ λ2 ≥ λ3 ≥ ·· · ≥ λn >−1.

Denote λmax = (|λi| : 2≤ i≤ n).

Theorem 3.3 Let P be the transition matrix of a regular, reversible Markov chain,
and other notations as above. Then for any U ⊆ S,

∆U(t)≤ λt
max

min
i∈U

πi
.

Proof. Let e1, . . . ,en be an orthonormal basis forRn consisting of left eigenvectors
of A, where vector ei is associated to eigenvalue λi. Especially, e1 = πD−1/2 =
[
√

π1,
√

π2, . . . ,
√

πn].
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Then A has a spectral representation

A =
n

∑
i=1

λi(e
i)T ei =

n

∑
i=1

λiEi,

where Ei = (ei)T ei. Clearly E2
i = Ei, and EiE j = 0 if i 6= j.

Thus, for any t ≥ 0, At = ∑n
i=1 λt

iEi, and hence

Pt = D−1/2AtD1/2 =
n

∑
i=1

λt
i

(
D−1/2(ei)T

)(
eiD1/2

)

= 1π+
n

∑
i=2

λt
i

(
D−1/2(ei)T

)(
eiD1/2

)
.

In component form, this means:

p(t)
jk = πk +

√
πk

π j

n

∑
i=2

λt
ie

i
je

i
k.

Computing the relative pointwise distance convergence rate, we thus get for any
U ⊆ S:

∆U(t) = max
j,k∈U

∣∣∣∣∣
n

∑
i=2

λt
ie

i
je

i
k

∣∣∣∣∣
√π jπk

(5)

≤ λt
max

max
j,k∈U

∣∣∣∣∣
n

∑
i=2

ei
je

i
k

∣∣∣∣∣
min
j∈U

π j

≤ λt
max

min
j∈U

π j
(by orthonormality of right eigenvectors). 2

Theorem 3.4 With notation and assumptions as above,

∆(t)≥ λt
max

for all even t. Moreover, if all eigenvalues of P are nonnegative, then the bound
holds for all t.
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Proof. Continue from equation (5) above:

∆(t) = ∆S(t)≥max
j∈S

∣∣∣∣∣
n

∑
i=2

λt
i(e

i
j)

2

∣∣∣∣∣
π j

≥ λt
max max

j∈S

(ei0
j )2

π j
,

where ei0 is an eigenvector corresponding to eigenvalue with absolute value λmax.
Necessarily (ei0

j )2 ≥ π j for some j for otherwise

||ei0||=
n

∑
j=1

(ei0
j )2 <

n

∑
j=1

π j = 1,

contradicting the normality of ei0 . 2

Note that always λmax = max(λ2, |λn|).
Negative eigenvalues are often a nuisance, but they can always be removed, with-
out affecting the convergence properties of the chain much, by adding appropriate
self-loops to the states. E.g.:

Proposition 3.5 With notation and assumptions as above, consider the chain de-
termined by transition matrix P′ = 1

2(I + P). This chain is then also regular and

reversible, has same stationary distribution π, and its eigenvalues satisfy λ′n > 0
and λ′max = λ′2 = 1

2(1+λ2). 2

With Theorem 3.3 and Proposition 3.5 in mind, it is clear that the key to analysing
convergence rates of reversible Markov chains is to find good techniques for
bounding the second eigenvalue λ2 away from 1.

An interesting and intuitive approach to this task is via the notion of “conduc-
tance” of a chain.

Given a finite, regular, reversible Markov chain M on the state space S = {1, . . . ,n},
transition probability matrix P = (pi j) and stationary distribution π = (πi), we as-
sociate to M a weighted graph G = (S,E,W), where E = {(i, j) | pi j > 0}, and
the weights on the edges correspond to the ergodic flows between states:

wi j = πipi j = π j p ji.

Given a state set A⊆ S, the capacity of A is defined as

CA = π(A) = ∑
i∈A

πi,
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and the ergodic flow out of A as

FA = ∑
i∈A
j/∈A

πipi j = ∑
i∈A
j/∈A

wi j = w(A, Ā).

(Note that 0 < FA ≤CA < 1.)

Then the conductance of the cut (A, Ā), or the (weighted) expansion of A is

ΦA =
FA

CA
=

w(A, Ā)

π(A)
,

and finally the conductance of M , or G, is obtained as

ΦM = Φ(G) = min
0<π(A)≤1/2

ΦA.

Since clearly FA = FĀ for any ∅ 6= A S, this may equally well be defined as:

Φ = min
∅6=A S

max(ΦA,ΦĀ).

Theorem 3.6 For a regular reversible Markov chain with underlying graph G,
the second eigenvalue of the transition matrix satisfies:

(i)

λ2 ≤ 1− Φ(G)2

2
;

(ii)

λ2 ≥ 1−2Φ(G).

Proof. Later. 2

Corollary 3.7 With notation and assumptions as above, the convergence rates for
the chain under consideration satisfy, for any ∅ 6= A S and t ≥ 0:

(i)

∆A(t)≤
(
1−Φ2/2

)t

min
i∈A

πi
;
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(ii)

∆(t)≥ (1−2Φ)t .

Corollary 3.8 Consider a family of regular reversible chains where all eigenval-
ues are nonnegative, parameterised by some input string x, and with underlying
graphs Gx. Then the chains are rapidly mixing, if and only if

Φ(Gx)≥
1

p(|x|) ,

for some polynomial p and all x.

Proof. According to Corollary 3.7 (i):

∆(t) ≤ ε

if
(1−Φ2/2)

t

mini∈A πi
≤ ε

if t · ln
(

1− Φ2

2

)

︸ ︷︷ ︸
≤−Φ2/2

≤ ln ε+ ln πmin

if −tΦ2/2 ≤ ln ε+ ln πmin

if t ≥ 2
Φ2

(
ln 1

ε + ln 1
πmin

)
.

Conversely, by Theorem 3.4 and Corollary 3.7 (ii):

∆(t) > ε
if λt

2 > ε
if t lnλ2 > ln ε
if t ln 1

λ2
< ln 1

ε

if t · 1−λ2
λ2

< ln 1
ε ln 1

λ = ln
(

1+ 1−λ
λ

)
≤ 1−λ

λ , 0 < λ≤ λ2

if t < λ2
1−λ2
· ln 1

ε
if t < 1−2Φ

2Φ ln 1
ε

λ
1−λ ↗, 1−2Φ≤ λ2.

Consequently,

1−2Φ(Gx)

2Φ(Gx)
ln

1
ε
≤ τx(ε)≤

2
Φ(Gx)2

(
ln

1
ε

+ ln
1

πx
min

)
.2
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Figure 11: A simple cyclic random walk.

Example 3.1 Simple cyclic random walk. Consider the regular, reversible Markov
chain described by the graph in Figure 11.

Clearly the stationary distribution is π = [ 1
n ,

1
n , · · · , 1

n ].

The conductance ΦA = FA/CA of a cut (A, Ā) is minimised by choosing A to con-
sist of any n/2 consecutive nodes on the cycle, e.g. A = {1,2, . . . ,n/2}. Then

Φ = ΦA =
FA

CA
=

∑
i∈A
j/∈A

πipi j

∑
i∈A

πi
=

2 · 1
n · 1

4
n
2 · 1

n

=
1/2n
1/2

=
1
n
.

Thus, by Theorem 3.6, the second eigenvalue satisfies:

1− 2
n
≤ λ2 ≤ 1− 1

2n2 ,

by Corollary 3.7, the convergence rate satisfies
(

1− 2
n

)t

≤ ∆(t)≤ n ·
(

1− 1
2n2

)t

,

and by Corollary 3.8, the mixing time satisfies:

1−2/n
2/n

ln
1
ε
≤ τ(ε)≤ 2n2

(
ln

1
ε

+ lnn

)

⇔
(n

2
−1
)
· ln 1

ε
≤ τ(ε)≤ 2n2

(
lnn+ ln

1
ε

)
.

Let us now return to the proof of Theorem 3.6, establishing the connection be-
tween the second-largest eigenvalue and the conductance of a Markov chain. Re-
call the statement of the Theorem:

Theorem 3.6 Let M be a finite, regular, reversible Markov chain and λ2 the
second-largest eigenvalue of its transition probability matrix. Then:


