Applying the same argument to $A^{T}$, which has the same $\lambda_{0}$ as $A$, yields the row sum bounds.

Corollary 1.10 Let $P \geq 0$ be the transition matrix of a regular Markov chain. Then there exists a unique distribution vector $\pi$ such that $\pi P=\pi .\left(\Leftrightarrow P^{T} \pi^{T}=\pi^{T}\right)$

Proof. By Lemma 1.6 and Corollary 1.8, $P$ has a unique largest eigenvalue $\lambda_{0} \in \mathbb{R}$. By Proposition 1.9, $\lambda_{0}=1$, because as a stochastic matrix all row sums of $P$ (i.e. the column sums of $P^{T}$ ) are 1 . Since the geometric multiplicity of $\lambda_{0}$ is 1 , there is a unique stochastic vector $\pi$ (i.e. satisfying $\sum_{i} \pi_{i}=1$ ) such that $\pi P=\pi$.

### 1.3 Convergence of Regular Markov Chains

In Corollary 1.10 we established that a regular Markov chain with transition matrix $P$ has a unique stationary distribution vector $\pi$ such that $\pi P=\pi$.

By elementary arguments (page 2) we know that starting from any initial distribution $q$, if the iteration $q, q P, q P^{2}, \ldots$ converges, then it must converge to this unique stationary distribution.
However, it remains to be shown that if the Markov chain determined by $P$ is regular, then the iteration always converges.

The following matrix decomposition is well known:
Lemma 1.11 (Jordan canonical form) Let $A \in \mathbb{C}^{n \times n}$ be any matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{l} \in \mathbb{C}, l \leq n$. Then there exists an invertible matrix $U \in \mathbb{C}^{n \times n}$ such that

$$
U A U^{-1}=\left[\begin{array}{cccc}
J_{1} & 0 & \cdots & 0 \\
0 & J_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & J_{r}
\end{array}\right]
$$

where each $J_{i}$ is a $k_{i} \times k_{i}$ Jordan block associated to some eigenvalue $\lambda$ of $A$ :

$$
J_{i}=\left[\begin{array}{cccccc}
\lambda & 1 & 0 & \cdots & 0 & 0 \\
0 & \lambda & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda & 1 \\
0 & 0 & 0 & \cdots & 0 & \lambda
\end{array}\right]
$$

The total number of blocks associated to a given eigenvalue $\lambda$ corresponds to $\lambda$ 's geometric multiplicity, and their total dimension $\sum_{i} k_{i}$ to $\lambda$ 's algebraic multiplicity.

Now let us consider the Jordan canonical form of a transition matrix $P$ for a regular Markov chain. Assume for simplicity that all the eigenvalues of $P$ are real and distinct. (The general argument is similar, but needs more complicated notation.) Then the rows of $U$ may be taken to be left eigenvectors of the matrix $P$, and the Jordan canonical form reduces to the familiar eigenvalue decomposition:

$$
U P U^{-1}=\Lambda=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right]
$$

In this case one notes that in fact the columns of $U^{-1}=V$ are precisely the right eigenvectors corresponding to the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. By Lemma 1.6 and Corollary 1.8, $P$ has a unique largest eigenvalue $\lambda_{1}=1$, and the other eigenvalues may be ordered so that $1>\left|\lambda_{2}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{l}\right|$. The unique (up to normalisation) left eigenvector associated to eigenvalue 1 is the stationary distribution $\pi$, and the corresponding unique (up to normalisation) right eigenvector is $\mathbf{1}=(1,1, \ldots, 1)$. If the first row of $U$ is normalised to $\pi$, then the first column of $V$ must be normalised to $\mathbf{1}$ because $U V=U U^{-1}=I$, and hence $(U V)_{11}=u_{1} v_{1}=$ $\pi v_{1}=1$.
Denoting

$$
\Lambda=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & \lambda_{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right]
$$

we have then:

$$
P^{2}=(V \Lambda U)^{2}=V \Lambda^{2} U=V\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & \lambda_{2}^{2} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}^{2}
\end{array}\right] U
$$

and in general

$$
\begin{aligned}
& P^{t}=V \Lambda^{t} U=V\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & \lambda_{2}^{t} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}^{t}
\end{array}\right] U \\
& \xrightarrow[t \rightarrow \infty]{\longrightarrow} V\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 0 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & 0
\end{array}\right] U=\left[\begin{array}{c}
v_{11} u_{1} \\
v_{12} u_{1} \\
\vdots \\
v_{1 n} u_{1}
\end{array}\right]=\left[\begin{array}{c}
\pi \\
\pi \\
\vdots \\
\pi
\end{array}\right] .
\end{aligned}
$$

To make the situation even more transparent, represent a given initial distribution $q=q^{0}$ in the eigenvector basis as

$$
\begin{aligned}
q & =\tilde{q_{1}} u_{1}+\tilde{q}_{2} u_{2}+\cdots+\tilde{q}_{n} u_{n} \\
& =\pi+\tilde{q_{2}} u_{2}+\cdots+\tilde{q}_{n} u_{n}, \quad \text { where } \tilde{q}_{i}=\frac{q u_{i}^{T}}{\left\|u_{i}\right\|^{2}} .
\end{aligned}
$$

Then

$$
q P=\left(\pi+\tilde{q}_{2} u_{2}+\cdots+\tilde{q}_{n} u_{n}\right) P=\pi+\tilde{q}_{2} \lambda_{2} u_{2}+\cdots+\tilde{q}_{n} \lambda_{n} u_{n},
$$

and generally

$$
q^{(t)}=q P^{t}=\pi+\sum_{i=2}^{n} \tilde{q}_{i} \lambda_{i}^{t} u_{i},
$$

implying that $q^{(t)} \underset{t \rightarrow \infty}{\longrightarrow} \pi$, and if the eigenvalues are ordered as assumed, then

$$
\left\|q^{(t)}-\pi\right\|=o\left(\left|\lambda_{2}\right|^{t}\right) .
$$

### 1.4 Transient Behaviour of General Chains

So what happens to the transient states in a reducible Markov chain?
A moment's thought shows that the transition matrix of an arbitrary (finite) Markov
chain can be put in the following canonical form:

$$
P=\left[\begin{array}{cccc}
P_{1} & & 0 & \\
& \ddots & & 0 \\
0 & & P_{r} & \\
& R & & Q
\end{array}\right]
$$

where the $r$ square matrices $P_{1}, \ldots, P_{r}$ in the upper left corner represent the transitions within the $r$ minimal closed classes, $Q$ represents the transitions among transient states, and $R$ represents the transitions from transient states to one of the closed classes.

In this ordering, stationary distributions (left eigenvectors of $P$ correspondonding to eigenvalue 1) must apparently be of the form $\pi=\left[\begin{array}{lllll}\pi_{1} & \cdots & \pi_{r} & 0 & \cdots\end{array}\right]$. (This follows e.g. from the fact that $Q$ must be "substochastic", i.e. have at least one row sum less than 1.)
Consider then the fundamental matrix $M=(I-Q)^{-1}$ of the chain. Intuitively, if $M$ is well-defined, it corresponds to $M=I+Q+Q^{2}+\ldots$, and represents all the possible transition sequences the chain can have without exiting $Q$.

Theorem 1.12 For any finite Markov chain, the fundamental matrix $M=(I-$ $Q)^{-1}$ is well-defined and positive. Its elements can be computed from the converging series $M=I+Q+Q^{2}+\ldots$

Proof. The result will follow from some more general results to be proved later. (We will look into applications first.)
Let $i, j$ be any two transient states in a Markov chain with a transition matrix as above. Then:

$$
\operatorname{Pr}\left(X_{t}=j \mid X_{0}=i\right)=Q_{i j}^{t} \triangleq q_{i j}^{(t)}
$$

Thus,

$$
\begin{aligned}
E\left[\text { number of visits to } j \in T \mid X_{0}=i \in T\right] & =q_{i j}^{(0)}+q_{i j}^{(1)}+q_{i j}^{(2)}+\ldots \\
& =I_{i j}+Q_{i j}+Q_{i j}^{2}+\ldots \\
& =M_{i j} \triangleq m_{i j}
\end{aligned}
$$



Figure 6: A Markov chain representing the geometric distribution.

Furthermore,

$$
\begin{aligned}
& E\left[\text { number of moves in } T \text { before exiting to } C \mid X_{0}=i \in T\right] \\
= & \sum_{j \in T} E\left[\text { number of visits to } j \in T \mid X_{0}=i \in T\right] \\
= & \sum_{j \in T} m_{i j} \\
= & (M \mathbf{1})_{i} .
\end{aligned}
$$

Finally, let $b_{i j}$ be the probability that the chain when started in transient state $i \in T$ will enter a minimal closed class via state $j \in C$. Denote $B=\left(b_{i j}\right)_{i \in T, j \in C}$. Then $B=M R$.

Proof. For given $i \in T, j \in C$,

$$
b_{i j}=p_{i j}+\sum_{t \in T} p_{i k} b_{k j}
$$

Thus,

$$
B=R+Q B \quad \Rightarrow \quad B=(I-Q)^{-1} R=M R .
$$

Example 1.4 The geometric distribution. Consider the chain of Figure 6, arising e.g. from biased coin-flipping The transition matrix in this case is

$$
P=\left[\begin{array}{ll}
1 & 0 \\
p & q
\end{array}\right] .
$$

$Q=(q), M=(1-q)^{-1}=1 / p$. Thus, e.g.
$E\left[\right.$ number of visits to 2 before exiting to $\left.1 \mid X_{0}=2\right]=M \mathbf{1}=\frac{1}{p}$.
The elementary way to obtain the same result:

$$
\begin{aligned}
E[\text { number of visits }] & =\sum_{t \geq 0} \operatorname{Pr}[\text { number of visits } \geq k] \\
& =1+q+q^{2}+\cdots=\frac{1}{1-q}=\frac{1}{p} .
\end{aligned}
$$



Figure 7: A Markov chain representing a coin-flipping game.

Example 1.5 Gambling tournament. Players A and B toss a biased coin with A's success probability equal to $p$ and B 's success probability equal to $1-p=q$. The person to first obtain $n$ successes over the other wins. What are A's chances of winning, given that he initially has $k$ successes over $\mathrm{B},-n \leq k \leq n$ ? (A more technical term for this process is "one-dimensional random walk with two absorbing barriers.")

For simplicity, let us consider only the case $n=2$. Then the chain is as represented in Figure 7, with transition matrix:

|  | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -2 | 1 | 0 | 0 | 0 | 0 |
| -1 | $q$ | 0 | $p$ | 0 | 0 |
| 0 | 0 | $q$ | 0 | $p$ | 0 |
| 1 | 0 | 0 | $q$ | 0 | $p$ |
| 2 | 0 | 0 | 0 | 0 | 1 |

i.e. in canonical form:

|  | -2 | 2 | -1 | 0 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -2 | 1 | 0 | 0 | 0 | 0 |
| 2 | 0 | 1 | 0 | 0 | 0 |
| -1 | $q$ | 0 | 0 | $p$ | 0 |
| 0 | 0 | 0 | $q$ | 0 | $p$ |
| 1 | 0 | $p$ | 0 | $q$ | 0 |

Thus, $M=(I-Q)^{-1}$

$$
=\left[\begin{array}{ccc}
1 & -p & 0 \\
-q & 1 & -p \\
0 & -q & 1
\end{array}\right]^{-1}=\frac{1}{p^{2}+q^{2}}\left[\begin{array}{ccc}
p+q^{2} & p & p^{2} \\
q & 1 & p \\
q^{2} & q & q+p^{2}
\end{array}\right]
$$

and so $B=M R$

$$
=\frac{1}{p^{2}+q^{2}}\left[\begin{array}{ccc}
p+q^{2} & p & p^{2} \\
q & 1 & p \\
q^{2} & q & q+p^{2}
\end{array}\right]\left[\begin{array}{ll}
q & 0 \\
0 & 0 \\
0 & p
\end{array}\right]=\frac{1}{p^{2}+q^{2}}\left[\begin{array}{cc}
q p+q^{3} & p^{3} \\
q^{2} & p^{2} \\
\underbrace{q^{3}}_{\mathrm{A} \text { loses }} & \underbrace{p q+p^{3}}_{\mathrm{A} \text { wins }}
\end{array}\right] .
$$

We conclude this section by establishing the truth of Theorem 1.12 via two basic lemmas.

Lemma 1.13 If all eigenvalues $\lambda$ of matrix $A$ satisfy $|\lambda|<1$, then $(I-A)^{-1}$ is well-defined and satisfies

$$
\begin{equation*}
(I-A)^{-1}=I+A+A^{2}+\ldots \tag{4}
\end{equation*}
$$

Proof. Assume first that the series in (4) converges to a matrix $B$. Then

$$
(I-A) B=\left(I+A+A^{2}+\ldots\right)-\left(A+A^{2}+\ldots\right)=I .
$$

Consider first the case where $A$ may be fully diagonalised: $M^{-1} A M=\Lambda$.
Then $A^{t}=M \Lambda^{t} M^{-1}$, and the series (4) is made up of various geometric series of the form $\lambda_{i}^{t}$, where $\lambda_{i}$ are the eigenvalues of $A$. All these converge, because $\left|\lambda_{i}\right|<$ 1. If $A$ is not diagonalisable, there may be series of the form $\lambda_{i}^{t}, t \lambda_{i}^{t}, t^{2} \lambda_{i}^{t}, \ldots, t^{n-1} \lambda_{i}^{t}$. Again these converge.

Lemma 1.14 Let A be a nonnegative matrix with Perron-Frobenius eigenvalue $\lambda_{0}$. Then the matrix $(\lambda I-A)^{-1}$ is well-defined and positive if and only if $\lambda>\lambda_{0}$.

Proof. Suppose first that $\lambda>\lambda_{0}(\geq 0)$. Then the matrix $\bar{A}=A / \lambda$ has all eigenvalues less than 1 in absolute value. By Lemma 1.13:

$$
(\lambda I-A)^{-1}=\frac{1}{\lambda}(I-\bar{A})^{-1}=\frac{1}{\lambda}\left(I+\frac{A}{\lambda}+\frac{A^{2}}{\lambda^{2}}+\ldots\right) .
$$

Thus $(\lambda I-A)^{-1}$ exists and is positive since every term in the series expansion is nonnegative.
Conversely, suppose $\lambda \leq \lambda_{0}$. Let $x_{0} \geq 0$ be an eigenvector corresponding to $\lambda_{0}$. Then $A x_{0} \geq \lambda x_{0}$, i.e. $(\lambda I-A) x_{0}+p=0$ for some $p \geq 0$. If $(\lambda I-A)^{-1}$ exists, then $(\lambda I-A)^{-1} p=-x_{0}$. Thus, since $p \geq 0,(\lambda I-A)^{-1}$ cannot be positive.
Proof of Theorem 1.12: Since elements of $Q^{t}$ are $t$-step transition probabilities within the transient classes, it follows (more of less from the definition of transient) that $Q^{t} \rightarrow 0$ as $t \rightarrow \infty$. Thus, the dominant eigenvalue of $Q$ must be less than 1 , and the claim follows from Lemma 1.14.


Figure 8: Detailed balance condition $\pi_{i} p_{i j}=\pi_{j} p_{j i}$.

### 1.5 Reversible Markov Chains

We now introduce an important special class of Markov chains often encountered in algorithmic applications. Many examples of these types of chains will be encountered later.

Intuitively, a "reversible" chain has no preferred time direction at equilibrium, i.e. any given sequence of states is equally likely to occur in forward as in backward order.

A Markov chain determined by the transition matrix $P=\left(p_{i j}\right)_{i, j \in S}$ is reversible if there is a distribution $\pi$ that satisfies the detailed balance conditions:

$$
\pi_{i} p_{i j}=\pi_{j} p_{j i} \quad \forall i, j \in S .
$$

Theorem 1.15 A distribution satisfying the detailed balance conditions is stationary.

Proof. It suffices to show that, assuming the detailed balance conditions, the following stationarity condition holds for all $i \in S$ :

$$
\pi_{i}=\sum_{j \in S} \pi_{j} p_{j i}
$$

But this is straightforward:

$$
\sum_{j \in S} \pi_{j} p_{j i}=\sum_{j \in S} \pi_{i} p_{i j}=\pi_{i} \sum_{j \in S} p_{j i}=\pi_{i} .
$$

Observe the intuition underlying the detailed balance condition: At stationarity, an equal amount of probability mass flows in each step from $i$ to $j$ as from $j$ to $i$.(The "ergodic flows"" between states are in pairwise balance; cf. Figure 8.)

Example 1.6 Random walks on graphs.


Figure 9: A nonreversible Markov chain.

Let $G=(V, E)$ be a (finite) graph, $V=\{1, \ldots, n\}$. Define a Markov chain on the nodes of $G$ so that at each step, one of the current node's neigbours is selected as the next state, uniformly at random. That is,

$$
p_{i j}=\left\{\begin{array}{ll}
\frac{1}{d_{i}}, & \text { if }(i, j) \in E \\
0, & \text { otherwise }
\end{array} \quad\left(d_{i}=\operatorname{deg}(i)\right)\right.
$$

Let us check that this chain is reversible, with stationary distribution

$$
\pi=\left[\begin{array}{lll}
\frac{d_{1}}{d} & \frac{d_{2}}{d} & \cdots
\end{array} \frac{d_{n}}{d}\right],
$$

where $d=\sum_{i=1}^{n} d_{i}=2|E|$. The detailed balance condition is easy to verify:

$$
\pi_{i} p_{i j}= \begin{cases}\frac{d_{i}}{d} \cdot \frac{1}{d_{i}}=\frac{1}{d}=\frac{d_{j}}{d} \cdot \frac{1}{d_{j}}=\pi_{j} p_{j i}, & \text { if }(i, j) \in E \\ 0=\pi_{j} p_{j i}, & \text { if }(i, j) \notin E\end{cases}
$$

## Example 1.7 A nonreversible chain.

Consider the three-state Markov chain shown in Figure 9. It is easy to verify that this chain has the unique stationary distribution $\pi=\left[\begin{array}{lll}\frac{1}{3} & \frac{1}{3} & \frac{1}{3}\end{array}\right]$. However, for any $i=1,2,3$ :

$$
\pi_{i} p_{i,(i+1)}=\frac{1}{3} \cdot \frac{2}{3}=\frac{2}{9}>\pi_{i+1} p_{(i+1), i}=\frac{1}{3} \cdot \frac{1}{3}=\frac{1}{9} .
$$

Thus, even in a stationary situation, the chain has a "preference" of moving in the counter-clockwise direction, i.e. it is not time-symmetric.

