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Applying the same argument #', which has the samky asA, yields the row
sum bounds.

Corollary 1.10 Let P> 0 be the transition matrix of a regular Markov chain.
Then there exists a unique distribution veatsuch thatP =Tt (< P’ =11')

Proof. By Lemma 1.6 and Corollary 1.8 has a unique largest eigenvalies R.
By Proposition 1.9A¢ = 1, because as a stochastic matrix all row sumB @fe.
the column sums d?') are 1. Since the geometric multiplicity d§ is 1, there is
a unique stochastic vectaor(i.e. satisfyingy; 14 = 1) such thati® = 1.

1.3 Convergence of Regular Markov Chains

In Corollary 1.10 we established that a regular Markov chdth transition ma-
trix P has a unique stationary distribution vectosuch thatP = Tt

By elementary arguments (page 2) we know that starting fnayriratial distribu-
tion g, if the iterationg, gP, P2, . .. converges, then it must converge to this unique
stationary distribution.

However, it remains to be shown that if the Markov chain dateed byP is
regular, then the iteration always converges.

The following matrix decomposition is well known:

Lemma 1.11 (Jordan canonical form) Let Ae C™" be any matrix with eigen-
valueshy, ..., A| € C, | <n. Then there exists an invertible matrixtJC"*" such
that

J 0 - 0
vau-i=| 0 2

Lo 0

o --- 0 J

where each;Jds a k x k; Jordan block associated to some eigenvalief A:

A1O0O-.-- 00

0O A1 00
J= : :

0 0O Al

0 0O 0 A
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The total number of blocks associated to a given eigenvakerresponds ta'’s
geometric multiplicity, and their total dimensigh ki to A’s algebraic multiplicity.

|

Now let us consider the Jordan canonical form of a transitiatrix P for a regular
Markov chain. Assume for simplicity that all the eigenvauad P are real and
distinct. (The general argument is similar, but needs monepticated notation.)
Then the rows o) may be taken to be left eigenvectors of the ma@and the
Jordan canonical form reduces to the familiar eigenvalwekposition:

A 0O - 0
uput=pn=| O %

Lo 0

0 - 0 M

In this case one notes that in fact the columnsloft =V are precisely theight
eigenvectors corresponding to the eigenvalhgs.. ,An,. By Lemma 1.6 and
Corollary 1.8,P has a unique largest eigenvalde = 1, and the other eigen-
values may be ordered so that-1|Az| > |A2| > --- > |A||. The unique (up to
normalisation) left eigenvector associated to eigenvaligethe stationary distri-
butionTtt, and the corresponding unique (up to normalisation) rigigr@/ector is
1=(1,1,...,1). If the first row ofU is normalised tat, then the first column of
V must be normalised tbbecaus&)V =UU 1 =1, and hencéUV)11=uivp =
v, = 1.

Denoting
1 0 0
A 0 A2 ,
0
0 0 A

we have then:

2 .
P2= (VAU)? =VA2U =V c_) _)‘2

0 -~ 0 A2
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and in general

10---0

t ..
PP = VAU = V 02 U

N ¢
0-.-0 )\tn

-0 V11Ug Tt

ol VioUus L1

0--- 00 VinUi Tt

To make the situation even more transparent, represenea giitial distribution
q= q° in the eigenvector basis as

g = Guur+gouz+---+gnln
qu
[|ui[2

= T+QoUux+---+qgaun, Whereqg =
Then
qP = (Tt+ Gauz2 + - - - + Gnln) P = 11+ GoA2Uz2 + - - - + GnAnUn,

and generally
n
qY =qP = n+i;dm%ui,

implying thatq! —— 1, and if the eigenvalues are ordered as assumed, then

t—o0

199 =il = o (1A2").

1.4 Transient Behaviour of General Chains

So what happens to the transient states in a reducible Matian?
A moment’s thought shows that the transition matrix of anteaby (finite) Markov
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chain can be put in the followinganonical form

P 0

p_| O P,

where ther square matriceBy, ..., P in the upper left corner represent the tran-
sitions within ther minimal closed classe®) represents the transitions among
transient states, ariRlrepresents the transitions from transient states to orfeeof t
closed classes.

In this ordering, stationary distributions (left eigentas of P correspondonding

to eigenvalue 1) must apparently be of the fama [y --- ¢ 0 --- 0]. (This
follows e.g. from the fact tha must be “substochastic”, i.e. have at least one row
sum less than 1.)

Consider then théundamental matrix M= (I — Q) of the chain. Intuitively, if
M is well-defined, it corresponds td = | + Q+ Q?+ ..., and represents all the
possible transition sequences the chain can have withdutgeL.

Theorem 1.12 For any finite Markov chain, the fundamental matrix=M(l —
Q)~!is well-defined and positive. Its elements can be computeud fne con-
verging series M= 1 +Q+ Q%+ ...

Proof. The result will follow from some more general results to beved later.
(We will look into applications first.)

Leti, j be any two transient states in a Markov chain with a transitatrix as
above. Then:

PG = | Xo=1) = Qfj 2 of .

Thus,
E[number of visits tgj € T | Xo=i € T] = qi(jo) +qi(j1) +qi(j2) o
lij +Qij +QF +...
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1 g=1-p

@ | O
Figure 6: A Markov chain representing the geometric distidm.

Furthermore,

E[number of moves i before exitingtaC | Xo =i € T|
= ZE[number of visitstg € T | Xo =i € T]
j

= j;mij
(M),

Finally, letb;j be the probability that the chain when started in transienésc T
will enter a minimal closed class via statee C. DenoteB = (bjj)icT,jec. Then
B=MR

Proof. For giveni € T, j € C,
bij = pij + ) Pikbxj-
&
Thus,
B=R+QB = B=(1-Q 'R=MR

Example 1.4 The geometric distributionConsider the chain of Figure 6, arising
e.g. from biased coin-flipping The transition matrix in thase is

St
P q
Q=(q),M=(1-q)1=1/p. Thus, eg.
E[number of visits to 2 before exiting to|Xp = 2] = M1 = %)
The elementary way to obtain the same result:
E[number of visit = t;Pr[number of visits> K|

1 1
e 1+q+q2+...:ﬁ26.
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& LI

Aloses 4

Figure 7: A Markov chain representing a coin-flipping game.

Example 1.5 Gambling tournament.Players A and B toss a biased coin with
A's success probability equal fwand B’s success probability equal te-Jp = g.

The person to first obtaimsuccesses over the other wins. What are A's chances of
winning, given that he initially has successes over B;n < k < n? (A more tech-
nical term for this process is “one-dimensional random wuilk two absorbing

barriers.”)

For simplicity, let us consider only the case- 2. Then the chain is as represented
in Figure 7, with transition matrix:

-2 -1 0 1 2
-2/'1 0 00O
-1/ g O p OO
0O/ 0 g O0poO
110 O gqoOwp
210 0 001

i.e. in canonical form:

-2 2 -1 01
-2/'1 0 0 0O
210 1 0 0O
-1/ g 0 O p O
0O/l0 O g O0wp
110 p 0 goO

1 —p 0] , [p+@ p P
- —q 1 —p > > 1 p
0 —q PRIl @ q at+p?
and soB= MR
+ 3 3
1 [p+td p P q 0 1 qpqq Ez
| 30 P00 S| & pasp?

A loses A wins
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We conclude this section by establishing the truth of Theotel2 via two basic
lemmas.

Lemma 1.13 If all eigenvalues\ of matrix A satisfyA| < 1, then(I —A)~1is
well-defined and satisfies

(I-A)T=1+A+A+ .. (4)

Proof. Assume first that the series in (4) converges to a m&rikhen
(I1—AB=(I+A+A%+. . )= (A+A%+. . ) =1I.

Consider first the case whefemay be fully diagonalisedl ~*AM = A.

ThenAl = MA'M~1, and the series (4) is made up of various geometric series of
the formA!, where); are the eigenvalues @& All these converge, becaugg| <

1. If Ais not diagonalisable, there may be series of the fdfrmA!, t2A%, ... 1"~ 1AL,
Again these converge;

Lemma 1.14 Let A be a nonnegative matrix with Perron-Frobenius eigémva
Ao. Then the matrixAl — A)~1 is well-defined and positive if and onlyNf> Ao.

Proof. Suppose first that > Ao (> 0). Then the matri¥A = A/A has all eigenval-
ues less than 1 in absolute value. By Lemma 1.13:

(I—A_\)‘1:}<I+5+A—2+...).

I _1:
(Al —A) X Y

1
A
Thus (Al — A)~1 exists and is positive since every term in the series exparisi
nonnegative.

Conversely, suppose< Ag. Letxg > 0 be an eigenvector correspondingh®
ThenAxy > AXp, i.e. (Al —A)Xo+ p = 0 for somep > 0. If (Al —A)‘1 exists, then
(Al —=A)~1p= —xo. Thus, sincg > 0, (Al — A)~* cannot be positivey

Proof of Theorem 1.12Since elements of* aret-step transition probabilities
within the transient classes, it follows (more of less frdre tefinition of tran-

sient) thatQ! — 0 ast — . Thus, the dominant eigenvalue@imust be less than
1, and the claim follows from Lemma 1.1
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Figure 8: Detailed balance conditionp;j = 11 pji.

1.5 Reversble Markov Chains

We now introduce an important special class of Markov chaften encountered
in algorithmic applications. Many examples of these typeshains will be en-
countered later.

Intuitively, a “reversible” chain has no preferred timeatition at equilibrium, i.e.
any given sequence of states is equally likely to occur iwéod as in backward
order.

A Markov chain determined by the transition matfix= (pj )i jes is reversibleif
there is a distributiom that satisfies thdetailed balance&onditions:

TP =mpji Vi,jeS

Theorem 1.15 A distribution satisfying the detailed balance conditioassta-
tionary.

Proof. It suffices to show that, assuming the detailed balance tondj the fol-
lowing stationarity condition holds for alle S:

T = anjpji-
i€

But this is straightforward:
T Pji = ) Tipij =TG4 » Pji =Ti.
O

Observe the intuition underlying the detailed balance d@m At stationarity,
an equal amount of probability mass flows in each step froonj as from| to
i.(The “ergodic flows™ between states are in pairwise bagart. Figure 8.)

Example 1.6 Random walks on graphs.
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Figure 9: A nonreversible Markov chain.

Let G = (V,E) be a (finite) graphy = {1,... ,n}. Define a Markov chain on the
nodes ofG so that at each step, one of the current node’s neigbhourtestase as
the next state, uniformly at random. That is,

1 . . .
g i(J)eE o .
Fij { 0, otherwise (di = ded(i))

Let us check that this chain is reversible, with stationasyribution

e |d g2 O
“ld d Td)

whered = 5 ; di = 2|E|. The detailed balance condition is easy to verify:

d .1 _1_ P
Tﬁpijz{g'ai_“a_ﬁ'dj_nlpllv !f(!,!)EE
|

Example 1.7 A nonreversible chain.

Consider the three-state Markov chain shown in Figure % diaisy to verify that

this chain has the unique stationary distributios= [3 1 $]. However, for

anyi=123:

Wl
Wl
(o]

12 2
TGPi(i+1) = 3’379 > Ti4+1P(i+1)i =

Thus, even in a stationary situation, the chain has a “peatss” of moving in the
counter-clockwise direction, i.e. it is not time-symmeiri



