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Applying the same argument toAT , which has the sameλ0 asA, yields the row
sum bounds.2

Corollary 1.10 Let P≥ 0 be the transition matrix of a regular Markov chain.
Then there exists a unique distribution vectorπ such thatπP= π. (⇔ PTπT = πT)

Proof.By Lemma 1.6 and Corollary 1.8,P has a unique largest eigenvalueλ0∈R.
By Proposition 1.9,λ0 = 1, because as a stochastic matrix all row sums ofP (i.e.
the column sums ofPT) are 1. Since the geometric multiplicity ofλ0 is 1, there is
a unique stochastic vectorπ (i.e. satisfying∑i πi = 1) such thatπP = π. 2

1.3 Convergence of Regular Markov Chains

In Corollary 1.10 we established that a regular Markov chainwith transition ma-
trix P has a unique stationary distribution vectorπ such thatπP = π.

By elementary arguments (page 2) we know that starting from any initial distribu-
tion q, if the iterationq,qP,qP2, . . . converges, then it must converge to this unique
stationary distribution.

However, it remains to be shown that if the Markov chain determined byP is
regular, then the iteration always converges.

The following matrix decomposition is well known:

Lemma 1.11 (Jordan canonical form) Let A∈ Cn×n be any matrix with eigen-
valuesλ1, . . . ,λl ∈C, l ≤ n. Then there exists an invertible matrix U∈C

n×n such
that

UAU−1 =








J1 0 · · · 0

0 J2
. . .

...
...

. . . . . . 0
0 · · · 0 Jr








where each Ji is a ki ×ki Jordan block associated to some eigenvalueλ of A:

Ji =










λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · λ 1
0 0 0 · · · 0 λ









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The total number of blocks associated to a given eigenvalueλ corresponds toλ’s
geometric multiplicity, and their total dimension∑i ki to λ’s algebraic multiplicity.

2

Now let us consider the Jordan canonical form of a transitionmatrixP for a regular
Markov chain. Assume for simplicity that all the eigenvalues of P are real and
distinct. (The general argument is similar, but needs more complicated notation.)
Then the rows ofU may be taken to be left eigenvectors of the matrixP, and the
Jordan canonical form reduces to the familiar eigenvalue decomposition:

UPU−1 = Λ =








λ1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λn








.

In this case one notes that in fact the columns ofU−1 = V are precisely theright
eigenvectors corresponding to the eigenvaluesλ1, . . . ,λn. By Lemma 1.6 and
Corollary 1.8,P has a unique largest eigenvalueλ1 = 1, and the other eigen-
values may be ordered so that 1> |λ2| ≥ |λ2| ≥ · · · ≥ |λl |. The unique (up to
normalisation) left eigenvector associated to eigenvalue1 is the stationary distri-
butionπ, and the corresponding unique (up to normalisation) right eigenvector is
1 = (1,1, . . . ,1). If the first row ofU is normalised toπ, then the first column of
V must be normalised to1 becauseUV = UU−1 = I , and hence(UV)11 = u1v1 =
πv1 = 1.

Denoting

Λ =








1 0 · · · 0

0 λ2
. . .

...
...

. . . . . . 0
0 · · · 0 λn








,

we have then:

P2 = (VΛU)2 = VΛ2U = V








1 0 · · · 0

0 λ2
2

. . .
...

...
. . . . . . 0

0 · · · 0 λ2
n








U,
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and in general

Pt = VΛtU = V








1 0 · · · 0

0 λt
2

. . .
...

...
. . . . . . 0

0 · · · 0 λt
n








U

−−→
t→∞

V








1 0 · · · 0

0 0
...

...
...

. . . . . . 0
0 · · · 0 0








U =








v11u1

v12u1
...

v1nu1








=








π
π
...
π








.

To make the situation even more transparent, represent a given initial distribution
q = q0 in the eigenvector basis as

q = q̃1u1 + q̃2u2+ · · ·+ q̃nun

= π+ q̃2u2+ · · ·+ q̃nun, where ˜qi =
quT

i

||ui||2
.

Then

qP= (π+ q̃2u2+ · · ·+ q̃nun)P = π+ q̃2λ2u2+ · · ·+ q̃nλnun,

and generally

q(t) = qPt = π+
n

∑
i=2

q̃iλt
iui,

implying thatq(t) −−→
t→∞

π, and if the eigenvalues are ordered as assumed, then

||q(t)−π|| = O (|λ2|
t).

1.4 Transient Behaviour of General Chains

So what happens to the transient states in a reducible Markovchain?

A moment’s thought shows that the transition matrix of an arbitrary (finite) Markov
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chain can be put in the followingcanonical form:

P =












P1 0
...

0 Pr

0

R Q












where ther square matricesP1, . . . ,Pr in the upper left corner represent the tran-
sitions within ther minimal closed classes,Q represents the transitions among
transient states, andR represents the transitions from transient states to one of the
closed classes.

In this ordering, stationary distributions (left eigenvectors ofP correspondonding
to eigenvalue 1) must apparently be of the formπ = [π1 · · · πr 0 · · · 0]. (This
follows e.g. from the fact thatQ must be “substochastic”, i.e. have at least one row
sum less than 1.)

Consider then thefundamental matrix M= (I −Q)−1 of the chain. Intuitively, if
M is well-defined, it corresponds toM = I +Q+Q2 + . . . , and represents all the
possible transition sequences the chain can have without exiting Q.

Theorem 1.12 For any finite Markov chain, the fundamental matrix M= (I −
Q)−1 is well-defined and positive. Its elements can be computed from the con-
verging series M= I +Q+Q2 + . . .

Proof. The result will follow from some more general results to be proved later.
(We will look into applications first.)2

Let i, j be any two transient states in a Markov chain with a transition matrix as
above. Then:

Pr(Xt = j | X0 = i) = Qt
i j , q(t)

i j .

Thus,

E[number of visits toj ∈ T | X0 = i ∈ T] = q(0)
i j +q(1)

i j +q(2)
i j + . . .

= Ii j +Qi j +Q2
i j + . . .

= Mi j , mi j
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21

p
q = 1− p1

Figure 6: A Markov chain representing the geometric distribution.

Furthermore,

E[number of moves inT before exiting toC | X0 = i ∈ T]

= ∑
j∈T

E[number of visits toj ∈ T | X0 = i ∈ T]

= ∑
j∈T

mi j

= (M1)i.

Finally, letbi j be the probability that the chain when started in transient statei ∈ T
will enter a minimal closed class via statej ∈C. DenoteB = (bi j )i∈T, j∈C. Then
B = MR.

Proof. For giveni ∈ T, j ∈C,

bi j = pi j + ∑
t∈T

pikbk j.

Thus,

B = R+QB ⇒ B = (I −Q)−1R= MR.

Example 1.4 The geometric distribution.Consider the chain of Figure 6, arising
e.g. from biased coin-flipping The transition matrix in thiscase is

P =

[
1 0
p q

]

.

Q = (q), M = (1−q)−1 = 1/p. Thus, e.g.

E[number of visits to 2 before exiting to 1| X0 = 2] = M1 =
1
p
.

The elementary way to obtain the same result:

E[number of visits] = ∑
t≥0

Pr[number of visits≥ k]

= 1+q+q2+ · · · =
1

1−q
=

1
p
.
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A loses A winsq

0

q

1

q
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−2 −1

p p p

Figure 7: A Markov chain representing a coin-flipping game.

Example 1.5 Gambling tournament.Players A and B toss a biased coin with
A’s success probability equal top and B’s success probability equal to 1− p = q.
The person to first obtainn successes over the other wins. What are A’s chances of
winning, given that he initially hask successes over B,−n≤ k≤ n? (A more tech-
nical term for this process is “one-dimensional random walkwith two absorbing
barriers.”)

For simplicity, let us consider only the casen= 2. Then the chain is as represented
in Figure 7, with transition matrix:

−2 −1 0 1 2
−2 1 0 0 0 0
−1 q 0 p 0 0
0 0 q 0 p 0
1 0 0 q 0 p
2 0 0 0 0 1

i.e. in canonical form:

−2 2 −1 0 1
−2 1 0 0 0 0
2 0 1 0 0 0
−1 q 0 0 p 0
0 0 0 q 0 p
1 0 p 0 q 0

Thus,M = (I −Q)−1

=





1 −p 0
−q 1 −p
0 −q 1





−1

=
1

p2+q2





p+q2 p p2

q 1 p
q2 q q+ p2





and soB = MR

=
1

p2 +q2





p+q2 p p2

q 1 p
q2 q q+ p2









q 0
0 0
0 p



 =
1

p2 +q2







qp+q3 p3

q2 p2

q3
︸︷︷︸

A loses

pq+ p3
︸ ︷︷ ︸

A wins







.
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We conclude this section by establishing the truth of Theorem 1.12 via two basic
lemmas.

Lemma 1.13 If all eigenvaluesλ of matrix A satisfy|λ| < 1, then(I −A)−1 is
well-defined and satisfies

(I −A)−1 = I +A+A2+ . . . (4)

Proof. Assume first that the series in (4) converges to a matrixB. Then

(I −A)B = (I +A+A2+ . . .)− (A+A2+ . . .) = I .

Consider first the case whereA may be fully diagonalised:M−1AM = Λ.

ThenAt = MΛtM−1, and the series (4) is made up of various geometric series of
the formλt

i , whereλi are the eigenvalues ofA. All these converge, because|λi| <
1. If A is not diagonalisable, there may be series of the formλt

i , tλ
t
i , t

2λt
i , . . . , t

n−1λt
i .

Again these converge.2

Lemma 1.14 Let A be a nonnegative matrix with Perron-Frobenius eigenvalue
λ0. Then the matrix(λI −A)−1 is well-defined and positive if and only ifλ > λ0.

Proof. Suppose first thatλ > λ0 (≥ 0). Then the matrix̄A = A/λ has all eigenval-
ues less than 1 in absolute value. By Lemma 1.13:

(λI −A)−1 =
1
λ
(I − Ā)−1 =

1
λ

(

I +
A
λ

+
A2

λ2 + . . .

)

.

Thus(λI −A)−1 exists and is positive since every term in the series expansion is
nonnegative.

Conversely, supposeλ ≤ λ0. Let x0 ≥ 0 be an eigenvector corresponding toλ0.
ThenAx0 ≥ λx0, i.e.(λI −A)x0+ p = 0 for somep≥ 0. If (λI −A)−1 exists, then
(λI −A)−1p = −x0. Thus, sincep≥ 0, (λI −A)−1 cannot be positive.2

Proof of Theorem 1.12:Since elements ofQt are t-step transition probabilities
within the transient classes, it follows (more of less from the definition of tran-
sient) thatQt → 0 ast → ∞. Thus, the dominant eigenvalue ofQ must be less than
1, and the claim follows from Lemma 1.14.2



20 Part I. Markov Chains and Stochastic Sampling

π jπi

pi j

p ji

Figure 8: Detailed balance conditionπi pi j = π j p ji .

1.5 Reversible Markov Chains

We now introduce an important special class of Markov chainsoften encountered
in algorithmic applications. Many examples of these types of chains will be en-
countered later.

Intuitively, a “reversible” chain has no preferred time direction at equilibrium, i.e.
any given sequence of states is equally likely to occur in forward as in backward
order.

A Markov chain determined by the transition matrixP = (pi j )i, j∈S is reversibleif
there is a distributionπ that satisfies thedetailed balanceconditions:

πi pi j = π j p ji ∀ i, j ∈ S.

Theorem 1.15 A distribution satisfying the detailed balance conditionsis sta-
tionary.

Proof. It suffices to show that, assuming the detailed balance conditions, the fol-
lowing stationarity condition holds for alli ∈ S:

πi = ∑
j∈S

π j p ji .

But this is straightforward:

∑
j∈S

π j p ji = ∑
j∈S

πi pi j = πi ∑
j∈S

p ji = πi.

2

Observe the intuition underlying the detailed balance condition: At stationarity,
an equal amount of probability mass flows in each step fromi to j as from j to
i.(The “ergodic flows”’ between states are in pairwise balance; cf. Figure 8.)

Example 1.6 Random walks on graphs.
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Figure 9: A nonreversible Markov chain.

Let G = (V,E) be a (finite) graph,V = {1, . . . ,n}. Define a Markov chain on the
nodes ofG so that at each step, one of the current node’s neigbours is selected as
the next state, uniformly at random. That is,

pi j =

{ 1
di

, if (i, j) ∈ E
0, otherwise

(di = deg(i))

Let us check that this chain is reversible, with stationary distribution

π =

[
d1

d
d2

d
· · ·

dn

d

]

,

whered = ∑n
i=1di = 2|E|. The detailed balance condition is easy to verify:

πi pi j =

{
di
d · 1

di
= 1

d =
d j
d · 1

d j
= π j p ji , if (i, j) ∈ E

0 = π j p ji , if (i, j) /∈ E

Example 1.7 A nonreversible chain.

Consider the three-state Markov chain shown in Figure 9. It is easy to verify that
this chain has the unique stationary distributionπ =

[1
3

1
3

1
3

]
. However, for

any i = 1,2,3:

πi pi,(i+1) =
1
3
·
2
3

=
2
9

> πi+1p(i+1),i =
1
3
·
1
3

=
1
9
.

Thus, even in a stationary situation, the chain has a “preference” of moving in the
counter-clockwise direction, i.e. it is not time-symmetric.


