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Background

Denote N = number of variables, M = number of clauses,
α = M/N .

Satisfiability transition at αc ≈ 4.267 (Mitchell et al. 1992, . . . ,
Braunstein et al. 2002).

Good experiences with local search methods in the satisfiable
region α < αc: e.g. GSAT (Selman et al. 1992), WalkSAT (Selman
et al. 1996). Experiments 1996: N ≤ 2000 at α ≈ αc.
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GSAT

Selman et al. 1992 . . . 1996.

Denote by E = EF (s) the number of unsatisfied clauses in formula
F under truth assignment s.

GSAT(F):
s = initial truth assignment;
while flips < max_flips do
if s satisfies F then output s & halt, else:
- find a variable x whose flipping causes

largest decrease in E (if no decrease is
possible, then smallest increase);

- flip x.
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NoisyGSAT

GSAT augmented by a fraction p of random walk moves.

NoisyGSAT(F,p):
s = initial truth assignment;
while flips < max_flips do
if s satisfies F then output s & halt, else:
- with probability p, pick a variable x

uniformly at random and flip it;
- with probability (1-p), do basic GSAT move:

- find a variable x whose flipping causes
largest decrease in E (if no decrease is
possible, then smallest increase);

- flip x.
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WalkSAT

NoisyGSAT focused on the unsatisfied clauses.

WalkSAT(F,p):
s = initial truth assignment;
while flips < max_flips do
if s satisfies F then output s & halt, else:
- pick a random unsatisfied clause C in F;
- if some variables in C can be flipped without

breaking any presently satisfied clauses,
then pick one such variable x at random; else:

- with probability p, pick a variable x
in C at random;

- with probability (1-p), pick an x in C
that breaks a minimal number of presently
satisfied clauses;

- flip x.
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WalkSAT vs. NoisyGSAT

The focusing seems to be important: in the (unsystematic)
experiments in Selman et al. (1996), WalkSAT outperforms
NoisyGSAT by several orders of magnitude.
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Recent results and conjectures

Barthel et al. (2003): numerical experiments with WalkSAT
(mainly with p = 1, some also with p < 1) at N = 50, 000,
α = 2.0 . . . 4.0. Observed transition in the dynamics at
αdyn ≈ 2.7 − 2.8. When α < αdyn, satisfying assignments are

found in linear time per variable (i.e. in a total of cN “flips”),
when α > αdyn exponential time is required.

Similar results obtained by Semerjian & Monasson (2003),
though with smaller experiments (N = 500).

Explanation: for α > αdyn the search equilibrates at a nonzero
energy level, and can only escape to a ground state through a
large enough random fluctuation.

Conjecture: no local search algorithm works in linear time
beyond the clustering transition at αs ≈ 3.92 − 3.93 (Mézard,
Monasson, Weigt et al.)
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WalkSAT experiments (3-SAT)
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Normalised solution times for WalkSAT, α = 3.8 . . . 4.3.
Left: complete data; right: medians and quartiles.
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WalkSAT linear scaling
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Cumulative solution time distributions for WalkSAT with p = 0.55.
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WalkSAT optimal noise level?
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WalkSAT sensitivity to noise
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Cumulative solution time distributions for WalkSAT at α = 4.20 with
p = 0.55 and p = 0.57.
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Record-to-Record Travel (RRT)

Very simple stochastic local optimisation algorithm introduced by
Dueck (1993). Dueck claimed good results on solving 442-city and
532-city TSP’s; after that little used.

RRT(E,d):
s = initial feasible solution;
s* = s; E* = E(s);
while moves < max_moves do
if s is a global min. of E then output s & halt,
else:

pick a random neighbour s’ of s;
if E(s’) <= E* + d then let s = s’;
if E(s’) < E* then:
s* = s’; E* = E(s’).
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RRT in action (d = 2)
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Focused RRT

In applying RRT to SAT, E(s) = number of clauses unsatisfied by
truth assignment s. Single-variable flip neighbourhoods.

Focusing: flipped variables chosen from unsatisfied clauses.
(Precisely: one unsatisfied clause is chosen at random, and from
there a variable at random.)

⇒ FRRT = focused RRT.

Local Search Algorithms for Random Satisfiability – 15/30



AB HELSINKI UNIVERSITY OF TECHNOLOGY

Laboratory for Theoretical Computer Science

FRRT experiments (3-SAT)
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Normalised solution times for FRRT, α = 3.8 . . . 4.3.
Left: complete data; right: medians and quartiles.
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FRRT linear scaling
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Cumulative solution time distributions for FRRT with d = 9.
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FRRT linear scaling (cont’d)

 0

 20

 40

 60

 80

 100

 1  10  100  1000  10000

cu
m

.fr
eq

.

flips/N

Focused Record-to-Record Travel (alpha = 4.15)

N = 10^4
N = 3*10^4

N = 10^5
N = 3*10^5

N = 10^6
 0

 20

 40

 60

 80

 100

 1  10  100  1000  10000

cu
m

.fr
eq

.

flips/N

Focused Record-to-Record Travel (alpha = 4.20)

N = 10^4
N = 3*10^4

Cumulative solution time distributions for FRRT with d = 7.
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FRRT qualitative observations
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For each fixed d there seems to be a transition value αd s.th. for
α < αd the algorithm runs in linear time per variable, and for α > αd

requires exponential time per variable. (Empirical estimates:
α5 ≈ 4.11, α6 ≈ 4.14, α7 ≈ 4.18, α8 ≈ 4.19, α9 ≈ 4.21.)
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FRRT qualitative observations cont’d
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An empirical fit of the transition points αd suggests that for large d
they converge towards α∞ ≈ 4.26.

Comparative experiments using WalkSAT with near optimal
parameter settings (p = 0.55) yield estimate αdyn ≈ 4.19 for

WalkSAT’s transition point.
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WalkSAT & FRRT on structured problems

Jia, Moore & Selman (2004) tested WalkSAT and FRRT on highly
structured “glassy” 3-SAT formulas. Here the number of variables is
always of the form N = L × L; values of L = 5, 8, 10, 11, 16 were
tried out. At L = 16 WalkSAT no longer converged; FRRT did, but
only for d = 5.
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Focused Metropolis Search

Arguably the most natural focused local search algorithm. Variable
flip acceptance probabilities determined by a parameter η,
0 ≤ η ≤ 1.

FMS(F,eta):
s = initial truth assignment;
while flips < max_flips do
if s satisfies F then output s & halt, else:

pick a random unsatisfied clause C in F;
pick a variable x in C at random;
let x’ = flip(x), s’ = s[x’/x];
if E(s’) <= E(s) then flip x, else:

flip x with prob. eta^(E(s’)-E(s)).
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FMS experiments (3-SAT)
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Normalised solution times for FMS, α = 3.8 . . . 4.3.
Left: complete data; right: medians and quartiles.
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FMS linear scaling
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Cumulative solution time distributions for FMS with η = 0.3.
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FMS optimal acceptance ratio?
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Normalised solution times for FMS with η = 0.28 . . . 0.38,
α = 4.10 . . . 4.22.
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FMS optimal acceptance ratio cont’d
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Cumulative solution time distributions for FMS with η = 0.36,
α = 4.20.
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Analysis?

For FRRT: landscape structure?

For FMS: contact processes?
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Combinatorial landscapes

Reidys & Stadler (SIAM Rev. 2002)

b(x)

x

y

z

f

barrier height from x to y: b(x, y) =
min{max{f(z) − f(x), 0 | z ∈ p} | p an x-y path}

barrier height of x 6∈ Opt:
b(x) = min{b(x, y) | f(y) < f(x)}

depth of a landscape:
Df = max{b(x) | x 6∈ Opt}
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Focused search as a contact process
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