Helsinki University of Technology Laboratory for Theoretical Computer Science Pekka Orponen (tel. 5246)

T-79.250 Combinatorial Models and Stochastic Algorithms (4 cr) Exam Tue 25 Oct 2005, 1–4 p.m.

Permitted material at exam: lecture notes, any personal handwritten notes, tutorial problems and their solutions; calculator.

Write down on each answer sheet:

- Your name, department, and study book number
- The text: "T-79.250 Combinatorial Models and Stochastic Algorithms 25.10.2005"
- The total number of answer sheets you are submitting for grading
 - 1. A *k*-wheel, denoted W_k , is a graph that consists of a *k*-cycle of nodes, each connected by an edge ("spoke") to a central node (the "hub").¹ Thus, the following is a 5-wheel W_5 :

Prove that the graph property "*G* contains a *k*-wheel" has a threshold function for any fixed $k \ge 3$, and compute it. 7*p*.

2. A *k*-wheel of order *r*, denoted W_k^r , is defined as follows: a W_k^1 is an ordinary *k*-wheel W_k , and for r > 1 a W_k^r consists of *k* copies of a W_k^{r-1} whose hubs, together with a new centre node, form a *k*-wheel. Thus, the following is a 5-wheel of order 2:

Determine the number of nodes and edges in a *k*-wheel of order *r*, and compute the clustering coefficient $c(W_k^r)$. 7*p*.

3. Recall the following results from problem 5 of tutorial 3:

Consider a random walk on an undirected graph G = (V, E), where transitions are made from each node *u* to an adjacent node with uniform probability β/d , where *d* is the maximum degree of any node in *G* and $\beta \le 1$ is a positive constant. In addition, each node *u* has a self-loop probability of $1 - \beta \deg(u)/d$. If *G* is connected and $\beta < 1$, then the corresponding Markov chain

¹Actually, in standard graph-theory terminology our W_k 's would be called (k + 1)-wheels.

 \mathcal{M}_G is regular and reversible, with uniform stationary distribution. Moreover, the conductance of \mathcal{M}_G is given by the formula

$$\Phi = \beta \mu(G)/d,$$

where $\mu(G)$, the *edge magnification* of *G*, is defined as

$$\mu(G) = \min_{0 < |U| \le |V|/2} \frac{|\partial(U)|}{|U|},$$

where $\partial(U) = \{\{u, v\} \in E \mid u \in U, v \notin U\}.$

Based on these results, design a Markov chain for sampling (approximately) uniformly at random a node from a *k*-wheel of order *r*. Estimate the number of steps required for the sampling process to converge to within a relative pointwise distance of ε of the uniform distribution. (Make some reasonable argument for the value of the relevant edge magnification. You do not need to provide a detailed proof.) 8*p*.

4. Consider the NP-complete *Spin Glass Ground State* decision problem: given a symmetric interaction matrix $J \in \{+1, -1\}^{N \times N}$, is there a state $\sigma \in \{+1, -1\}^N$ of the *N* spins in the system such that *all* the $M = {N \choose 2}$ bonds are satisfied, i.e. such that the Hamiltonian achieves its minimum value

$$H(\sigma) = -\sum_{i \sim j} J_{ij} S_i S_j = -M?$$

Assuming that the antiferromagnetic bonds (negative interactions) $J_{ij} = -1$ constitute some fraction α of all the bonds, make an educated guess concerning the value of α for which the problem is most difficult to solve, in the ensemble of systems with N spins and $M = {N \choose 2}$ bonds, out of which αM are chosen to be antiferromagnetic uniformly at random. (*Hint:* It may be easier to consider the a.f.m. bond density α initially as a function of N rather than M.) 8p.

Total 30p.