T-79.250 Spring 2005

Combinatorial Models and Stochastic Algorithms Tutorial 10, April 8 Problems

1. Consider a simple self-reduction setting for an NP relation R, where for any input x of length $|x| > n_0$, the set of witnesses $R(x) = \{w \mid R(x, w)\}$ can be partitioned into two disjoint classes by polynomially computable length-decreasing self-reduction functions f_0 and f_1 , i.e. for $|x| > n_0$,

$$R(x) = R(f_0(x)) \uplus R(f_1(x)), \quad |f_0(x)|, |f_1(x)| < |x|.$$

Assume the availability of a perfect small-scale sampler $U_R(x)$ for generating elements $w \in R(x)$ uniformly at random for inputs x of length $|x| \le n_0$, and an FPRAS $A(x, \epsilon)$ for approximately counting the number of elements in R(x) for all x. Show how these can be combined to obtain an FPAUS $S(x, \delta)$ for sampling elements in R(x) almost uniformly at random for arbitrary inputs x. (For simplicity, you may assume that $A(x, \epsilon)$ provides its answers with perfect reliability, rather than reliability $\frac{3}{4}$ as would be permitted by the general FPRAS definition.)

- 2. Continuing the previous problem setting, assume conversely the availability of a perfect small-scale witness-counter $N_R(x)$ for computing the size of R(x) for $|x| \leq n_0$, and an FPAUS $S(x, \delta)$ for sampling elements in R(x) almost uniformly at random for all x. Show how these can be combined to obtain an FPRAS $A(x, \epsilon)$ for approximately counting the number of elements in R(x) for arbitrary inputs x.
- 3. (a) Let A_1, A_2, \ldots be a collection of events, and $A = \bigcap_{n \geq 1} \cup_{m \geq n} A_m$ the event that infinitely many of the A_m occur. Prove the "first Borel-Cantelli lemma", which states that if $\sum_{n \geq 1} \Pr(A_n) < \infty$, then $\Pr(A) = 0$. (*Hint:* $A \subseteq \bigcup_{m \geq n} A_m$ for all $n \geq 1$.)
 - (b) Based on the previous result, prove the following special case of Kolmogorov's Strong Law of Large Numbers: for any sequence X_1, X_2, \ldots of i.i.d. random variables for which $E(X_1) = 0$ and $E(X_1^4) < \infty$, $\frac{1}{n}(X_1 + X_2 + \cdots + X_n) \to 0$ almost surely, i.e. denoting $S_n = \sum_{k=1}^n X_k$,

$$\Pr(\exists \epsilon > 0 \text{ s.th. } |S_n|/n > \epsilon \text{ infinitely often}) = 0.$$

(*Hint*: For a given $\epsilon > 0$, consider the events $A_n = \{|S_n| \geq n\epsilon\} = \{S_n^4 \geq (n\epsilon)^4\}$. Apply Markov's inequality and the fact that for independent random variables X_1 and X_2 , $E(X_1X_2) = E(X_1)E(X_2)$.)

4. Let \mathcal{M} be a regular finite Markov chain with state space S and stationary distribution π . Recall from problem 5 of tutorial 1 that for any $i \in S$, $\pi_i = 1/\mu_i$, where μ_i is the expected return time to i. Let then $A \subseteq S$ be any set of states of \mathcal{M} , and denote by τ_k , $k \ge 1$, the sequence of return times to A in a sample path ("run") of \mathcal{M} . Show that given any initial distribution μ for \mathcal{M} , the condition

$$\lim_{k \to \infty} \frac{\tau_k}{k} = \frac{1}{\sum_{i \in A} \pi_i}$$

holds μ -almost surely.