T-79.250 Spring 2005

Combinatorial Models and Stochastic Algorithms Tutorial 8, March 18 Problems

- 1. Let Q be a monotone graph property and denote by $P_n^Q(p)$ the probability that a random graph $G \in \mathcal{G}(n,p)$ has property Q. Prove that $P_n^Q(p)$ is a continuous, increasing function of p. (Hint: The result may not be as obvious as it seems. One approach is to write down an explicit expression for the probability that a subgraph with exactly k edges has property Q, sum over all k, and differentiate with respect to p. Other, more purely combinatorial approaches are also possible.)
- 2. Let X be the number of cycles in a random graph $G \in \mathcal{G}(n,p)$, where p = c/n. Find an exact formula for E[X], and estimate the asymptotics of E[X] when (a) c < 1 and (b) c = 1.
- 3. Consider the space Ω_n of random equiprobable permutations of $[n] = \{1, \ldots, n\}$. A permutation $\pi \in \Omega_n$ contains an increasing subsequence of length k, if there are indices $i_1 < \cdots < i_k$ such that $\pi(i_1) < \cdots < \pi(i_k)$.
 - (a) Show that almost no permutation $\pi \in \Omega_n$ contains an increasing subsequence of length at least $e\sqrt{n}$. (*Hint:* Let $I_k(\pi)$ be the number of increasing subsequences of length k contained in π . Estimate $E[I_k]$.)
 - (b) Denote the length of a maximal increasing subsequence contained in a permutation π by $I(\pi)$, and correspondingly the length of a maximal decreasing subsequence by $D(\pi)$. Erdős and Szekeres proved in 1935 that $I(\pi)D(\pi) \geq n$ for any permutation π of [n], (The proof is simple & elegant; think about it or look it up in any combinatorics textbook under "Ramsey theory.") Deduce from this result and the result of part (a) that almost every permutation $\pi \in \Omega_n$ contains an increasing subsequence of length at least \sqrt{n}/e .