- 1. Consider the ensemble of *n*-bit binary strings $\Omega = \{0, 1\}^n$ with Hamiltonian $H(\omega) =$ number of 1's in string ω . Compute explicitly the partition function Z_{β} for this ensemble, and derive expressions for its macroscopic total energy U_{β} and entropy S_{β} . Solve the equation $U_{\beta} = h$ for β .
- 2. Compute the partition function for the binary NK model where K = 0, and the fitness function for allele $a_i \in \{0, 1\}$ is uniformly $f^i(a_i) = ca_i + b$, for given constants $c, b \in \mathbb{R}$.
- 3. Compute the expected number of (a) edges, (b) *r*-cliques (complete subgraphs K_r) in a random graph $G \in \mathcal{G}(n, p)$.
- 4. Derive Theorem 4.1 of the lecture notes (given any fixed graph H, a.e. $G \in \mathcal{G}(n, p)$ for 0 contains an induced copy of <math>H) from Lemma 4.2 of the notes (for any fixed $k, l \in \mathbb{N}$, a.e. $G \in \mathcal{G}(n, p)$ for $0 has property <math>Q_{kl}$).
- 5. Prove that the graph property "G has maximum degree at least k" has a threshold function for $k \ge 1$, and compute it.
- 6. Prove that the graph property "G contains a d-dimensional cube" has a threshold function for $d \ge 1$, and compute it. (The "d-dimensional cube" has 2^d vertices represented as $\{0,1\}^d$, and two vertices are connected by an edge if and only if their representations differ in exactly one position.)