Helsinki University of Technology Laboratory for Theoretical Computer Science Pekka Orponen (tel. 5246)

T-79.250 Combinatorial Models and Stochastic Algorithms (4 cr) Exam Wed 14 May 2003, 9–12 a.m.

Permitted material at exam: lecture notes, any personal handwritten notes, tutorial problems and their solutions; calculator.

Write down on each answer sheet:

- Your name, department, and study book number
- The text: "T-79.250 Combinatorial Models and Stochastic Algorithms 14.5.2003"
- The total number of answer sheets you are submitting for grading
 - 1. Prove that the graph property "G contains a connected subgraph of at least k nodes" has a threshold function for any fixed $k \ge 2$, and compute it. 6p.
 - 2. Let *m* and *n* be positive integers with gcd(m, n) = 1, and consider the Markov chain defined on state space $S = \{0, \ldots, m-1\} \times \{0, \ldots, n-1\}$ by the transition rule: from state (i, j), move with probability $\frac{1}{2}$ to state $(i+1 \mod m, j)$, and with probability $\frac{1}{2}$ to state $(i, j+1 \mod n)$. (I.e. the chain always moves either "right" or "up" on the rectangular grid *S*, with periodic boundary conditions.) Show that the chain is regular and determine its stationary distribution. *6p.*
 - 3. Give some nontrivial upper bound on the mixing time of the chain defined in Problem 2. (You don't need to try to get a best possible result.) 6p.
 - 4. Consider an NK model with K = 2, binary alleles $(a \in \{0, 1\})$, and each locus *i* being influenced by loci $i \pm 1 \pmod{N}$. The local fitness function for the model is defined as $f(a_i; a_{i-1}, a_{i+1}) = 1$, if $a_{i-1} \neq a_i = a_{i+1}$, and 0 otherwise. Design a simulated annealing approach to optimising the corresponding genotype fitness function, and give a (theoretical) bound on a cooling schedule that guarantees asymptotic convergence to the set of fitness-optimal genotypes. *bp.*
 - 5. Recall the following results from Tutorial Problem 6/4:

"Consider a random walk on an undirected graph G = (V, E), where transitions are made from each node u to an adjacent node with uniform probability β/d , where d is the maximum degree of any node in G and $\beta \leq 1$ is a positive constant. In addition, each node u has a self-loop probability of $1 - \beta \deg(u)/d$. If G is connected and $\beta < 1$, then the corresponding Markov chain \mathcal{M}_G is regular and reversible, with uniform stationary distribution. Moreover, the conductance of \mathcal{M}_G is given by the formula

$$\Phi = \beta \mu(G)/d,$$

where $\mu(G)$, the *edge magnification* of G, is defined as

$$\mu(G) = \min_{0 < |U| \le |V|/2} \frac{|\partial(U)|}{|U|},$$

where $\partial(U) = \{\{u, v\} \in E \mid u \in U, v \notin U\}.$

Based on these results, design a Markov chain for sampling (approximately) uniformly at random a node from a "caveman graph" consisting of m r-node "caves" connected together in an m-cycle, as discussed in the lectures. Estimate the number of steps required for the sampling process to converge within a relative pointwise distance of ε of the uniform distribution. Can you relax in the design of the Markov chain the assumption of knowing the number of the caves? δp .

Total 30p.