Spring 2003

T-79.250 Combinatorial Models and Stochastic Algorithms Tutorial 6, March 7 Problems

- 1. Let \mathcal{M} be a regular Markov chain on state set $S = \{1, \ldots, n\}$, with transition probability matrix P and stationary distribution π . Verify the claim that \mathcal{M} is reversible if and only if the matrix $A = D^{1/2}PD^{-1/2}$ is symmetric, where $D^{1/2}$ is the diagonal matrix $\operatorname{diag}(\sqrt{\pi_1}, \ldots, \sqrt{\pi_n})$.
- 2. Verify the claims in Proposition 5.20 of the lecture notes, viz. that under the assumptions of Problem 1, the chain \mathcal{M}' with transition matrix $P' = \frac{1}{2}(I_n + P)$ is also regular and reversible, has same stationary distribution π as \mathcal{M} , its eigenvalues satisfy $1 = \lambda'_1 > \lambda'_2 \geq \cdots \geq \lambda'_n > 0$, and $\lambda'_{\max} = \lambda'_2 = \frac{1}{2}(1 + \lambda_2)$. Estimate the effect of the change from P to P' on the convergence rate of the chain.
- 3. Determine the exact magnitude of the second eigenvalue λ_2 for the circular Markov chain on n states discussed on pp. 85 and 88 of the lecture notes, and compare this to the estimates calculated in the notes. (If computing the exact value of λ_2 for general n is overwhelming, try out numerically some small values of n.)
- 4. Consider a random walk on an undirected graph G = (V, E), where transitions are made from each node u to an adjacent node with uniform probability β/d , where d is the maximum degree of any node in G and $\beta \leq 1$ is a positive constant. In addition, each node u has a self-loop probability of $1 - \beta \deg(u)/d$. Prove that if G is connected and $\beta < 1$, then the corresponding Markov chain \mathcal{M}_G is regular and reversible, with uniform stationary distribution. Moreover, show that the conductance of \mathcal{M}_G is given by the formula

$$\Phi = \beta \mu(G)/d,$$

where $\mu(G)$ is the *edge magnification* (also known as the *isoperimetric number* or *Cheeger* constant) of G, defined as

$$\mu(G) = \min_{0 < |U| \le |V|/2} \frac{|\partial(U)|}{|U|},$$

where $\partial(U) = \{\{u, v\} \in E \mid u \in U, v \notin U\}.$

- 5. Based on the result of Problem 4, calculate an upper bound on the mixing time of a uniform random walk on an $n \times n$ lattice with self-loop parameter $0 < 1 \beta < 1$ and periodic boundary conditions (i.e. each node $(i, j), i, j = 0, \ldots, n-1$, has as neighbours the nodes $(i \pm 1, j \pm 1) \mod n$).
- 6. Calculate, using the method of canonical paths, an upper bound on the mixing time of the simple random walk on a Boolean hypercube $B_n = \{0, 1\}^n$, where at each node u there is a self-loop probability of 1/2, and otherwise a uniform probability 1/2n of moving to any of the n nodes at Hamming distance 1 from u.