T-79.250 Combinatorial Models and Stochastic Algorithms Tutorial 3, February 14 Problems

- 1. Let X be the number of cycles in a random graph $G \in \mathcal{G}(n, p)$, where p = c/n. Find an exact formula for E[X], and estimate the asymptotics of E[X] when (a) c < 1 and (b) c = 1.
- 2. Consider the space Ω_n of random equiprobable permutations of $[n] = \{1, \ldots, n\}$. A permutation $\pi \in \Omega_n$ contains an *increasing subsequence of length* k, if there are indices $i_1 < \cdots < i_k$ such that $\pi(i_1) < \cdots < \pi(i_k)$.
 - (a) Show that almost no permutation $\pi \in \Omega_n$ contains an increasing subsequence of length at least $e\sqrt{n}$. (*Hint:* Let $I_k(\pi)$ be the number of increasing subsequences of length k contained in π . Estimate $E[I_k]$.)
 - (b) Denote the length of a maximal increasing subsequence contained in a permutation π by $I(\pi)$, and correspondingly the length of a maximal *decreasing* subsequence by $D(\pi)$. Erdős and Szekeres proved in 1935 that $I(\pi)D(\pi) \ge n$ for any permutation π of [n], (The proof is simple & elegant; think about it or look it up in any combinatorics textbook under "Ramsey theory.") Deduce from this result and the result of part (a) that almost every permutation $\pi \in \Omega_n$ contains an increasing subsequence of length at least $\sqrt{n/e}$.
- 3. Compute the expected value of the clustering coefficient $\mathcal{C}(G)$ for an ER random graph $G \in \mathcal{G}(n, p)$. Give also some estimates for the expected value of the characteristic path length $\mathcal{L}(G)$.
- 4. Compute the clustering coefficient $\mathcal{C}(G)$, characteristic path length $\mathcal{L}(G)$, and distribution of node degrees for a circulant graph C_{nk} . (It suffices to compute these quantities asymptotically for fixed k and large n.) What is the edge density $p = e(C_{nk})/{\binom{n}{2}}$ for such a graph? What is the effect on $\mathcal{L}(G)$ of a single randomly added shortcut edge?
- 5. Compute the clustering coefficient $\mathcal{C}(G)$, characteristic path length $\mathcal{L}(G)$, and distribution of node degrees for a "caveman graph" consisting of k "caves" of r nodes each. What is the edge density p for such a graph? (Recall that a "caveman graph" is a cyclic arrangement of k appropriately modified r-cliques. It suffices to compute these quantities asymptotically for (a) fixed r and large k and (b) the case $r \sim k \sim \sqrt{n}$ for large n.)