
T-79.250 Spring 2003
Combinatorial Models and Stochastic Algorithms
Tutorial 10, April 4
Problems

1. The permanent of an n× n matrix A = (ai,j) is defined as

per(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i),

where Sn denotes the group of permutations of the set {1, . . . , n}. Consider for
example the matrix

A =


0 1 1 0
1 1 0 0
0 0 1 1
1 1 1 1

 .

Interpret this A as the adjacency matrix of a (4 + 4)-node bipartite graph GA,
compute per(A) and observe that it is the same as the number of perfect match-
ings in GA. (A perfect matching in a graph is a subset of its edges such that
each node is incident with exactly one of the chosen edges.) Explain why this
correspondence holds for any binary-valued matrix A ∈ {0, 1}n×n, and show that
the problem of computing permanents of such matrices is self-reducible in an
appropriate sense.

2. Consider a simple self-reduction setting for an NP relation R, where for any input
x of length |x| > n0, the set of witnesses R(x) = {w | R(x, w)} can be parti-
tioned into two disjoint classes by polynomially computable length-decreasing
self-reduction functions f0 and f1, i.e. for |x| > n0,

R(x) = R(f0(x)) ]R(f1(x)), |f0(x)|, |f1(x)| < |x|.

Assume the availability of a perfect small-scale sampler UR(x) for generating
elements w ∈ R(x) uniformly at random for inputs x of length |x| ≤ n0, and an
FPRAS A(x, ε) for approximately counting the number of elements in R(x) for
|x| > n0. Show how these can be combined to obtain an FPAUS S(x, δ) for
sampling elements in R(x) almost uniformly at random for arbitrary inputs x.

3. Continuing the previous problem setting, assume conversely the availability of
a perfect small-scale witness-counter NR(x) for computing the size of R(x) for
|x| ≤ n0, and an FPAUS S(x, δ) for sampling elements in R(x) almost uniformly
at random for |x| > n0. Show how these can be combined to obtain an FPRAS
A(x, ε) for approximately counting the number of elements in R(x) for arbitrary
inputs x.

(PLEASE TURN OVER)



4. (a) Let A1, A2, . . . be a collection of events, and A = ∩n≥1 ∪m≥n Am the event
that infinitely many of the Am occur. Prove the “first Borel-Cantelli lemma”,
which states that if

∑
n≥1 Pr(An) < ∞, then Pr(A) = 0. (Hint: A ⊆

∪m≥nAm for all m ≥ 1.)

(b) Based on the previous result, prove the following special case of Kolmogorov’s
Strong Law of Large Numbers: for any sequence X1, X2, . . . of i.i.d. random
variables for which E(X1) = 0 and E(X4

1 ) < ∞, 1
n
(X1 +X2 + · · ·+Xn) → 0

almost surely, i.e. denoting Sn =
∑n

k=1 Xk,

Pr(∃ε > 0 s.th. |Sn|/n > ε infinitely often) = 0.

(Hint: For a given ε > 0, consider the events An = {|Sn| > nε} =
{S4

n > (nε)4}. Apply Markov’s inequality and the fact that for independent
random variables X1 and X2, E(X1X2) = E(X1)E(X2).)

5. Let M be a regular finite Markov chain with state space S and stationary distri-
bution π. Recall from tutorial problem 4/5 that for any i ∈ S, πi = 1/µi, where
µi is the expected return time to i. Let then A ⊆ S be any set of states of M,
and denote by τk, k ≥ 1, the sequence of return times to A in a sample path
(“run”) of M. Show that given any initial distribution µ for M, the condition

lim
k→∞

τk

k
=

1∑
i∈A πi

holds µ-almost surely.


