
T-79.231 Parallel and Distributed Digital Systems

Process Algebra

Marko Mäkelä

August 5, 2003

T-79.231: Process Algebra 9-1

Background

Parallel and distributed system tend to consist of relatively independent processes that

communicate every now and then by exchanging messages or accessing shared memory.

With Petri nets, it is easy to model shared memory (as shared places of transitions), but

in their basic form, they do not distinguish processes.∗ It is difficult to tell which process a

given place or transition belongs to, or if they have something to do with communication.

Partial order reduction methods attempt to reconstruct this information afterwards, which

does not always work efficiently.

Process algebra focuses on the modelling of transitions and compositional modelling,

where processes are modelled separately and connected to each other. Process algebras

are based on transition systems, which can be compared with each other or reduced with

respect to some equivalence relation.

∗Modular nets allow the modelling of processes.

Marko Mäkelä

T-79.231: Process Algebra 9-2

CCS and CSP
The two best known process algebras are CCS (Calculus of Communicating Systems) by
Robin Milner and CSP (Communicating Sequential Processes) by Tony Hoare.

CCS distinguishes three kinds of actions: internal actions of a prosess or an agent (τ),
reception (α) and transmission (α). Communication takes place between two agents.

Originally (1978), Hoare defined CSP by extending Dijkstra’s guarded command language
with transmission and reception statements, but the current form of CSP (1985) does not
tell apart different kinds of synchronisation: any number of agents can participate.

The semantics of synchronisation is defined by the parallel composition rule. One could
define that an agent can only execute an action in parallel with all agents that contain
an equally named action. Alternatively, it could be defined that not all agents need to
synchronise. In that case, the size of the parallel composition would grow easily.

This lecture concentrates on the process algebra CCS.

Marko Mäkelä

T-79.231: Process Algebra 9-3

Prosess Algebra and Transition Systems

P

Q R

S T

α
β

τ

α
γ

τ
P ::= α . Q+α . S
Q ::= β . R
R ::= τ . P
S ::= γ . T
T ::= τ . P

P ::= α . β . τ . P+α . γ . τ . P

U V

W

X

α
β

τ

γ

τ
U ::= α . V
V ::= β . W+ γ . X
W ::= τ . U
X ::= τ . U

U ::= α . (β . τ . U + γ . τ . U)

Marko Mäkelä

T-79.231: Process Algebra 9-4

The Basics of Process Algebras

• Every agent has a name. In mathematical notation, agents are usually denoted

with capital letters P,Q,R, . . .; tools may use some other notation, such as numbers

0,1,2,

• The invisible action τ denotes internal operations of an agent. These actions cannot

be observed or affected by other agents.

• Visible actions are often denoted with Greek letters α,β,γ, The parallel compo-

sition rule defines how agents can synchronise by executing visible actions simulta-

neously.

• Process algebra concentrates on actions. The notation P
α−→Q means that agent P

behaves identically with agent Q once it has executed the action α.

Marko Mäkelä

T-79.231: Process Algebra 9-5

Special Characteristics of CCS

• For every visible action α 6= τ, there is a complement action α. The complement of
a complement action is the action itself: α = α.

• The action and its complement can be thought as the reception and transmission of
the same message.

• The parallel composition rule deals with two agents at a time: if Q is capable of

receiving the message γ and R is capable of sending it or vice versa (Q
γ−→Q′,R γ−→

R′), then (Q‖R) τ−→ (Q′‖R′). The agents can also proceed independently: if Q
β−→

Q′′, then (Q‖R)
β−→ (Q′′‖R).∗ This parallel composition is symmetric: (Q‖R) =

(R‖Q).

∗This holds, even if R could proceed with β.

Marko Mäkelä

T-79.231: Process Algebra 9-6

The Syntax and Semantics of CCS (1/2)
Next, we shall present the syntax and semantics of the process algebra CCS.

The empty agent (Nil) is incapable of executing actions: 6 ∃α,P : Nil
α−→ P.

Action Prefixing Let Q be an agent and α an (invisible or visible) action. Then P ::= α .
(Q) is an agent and P

α−→Q. The agent P can execute α and then behave like the
agent Q.

Choice Let there be agents Q and R and actions α and β. P ::= (Q+R) is an agent. If

Q
α−→Q′, then P

α−→Q′. If R
β−→R′, then P

β−→R′. In its “initial state,” agent P can
choose whether it behaves like Q or like R.

Restriction Let Q be an agent and Σ be a set of visible actions, τ 6∈ Σ. Then P ::= (Q)\Σ
is an agent. If Q

α−→Q′ and α 6∈ Σ,α 6∈ Σ, then ((Q)\Σ) α−→ ((Q′)\Σ). Agent P is
like Q, but it cannot execute actions in the set Σ or their complement actions.

Marko Mäkelä

T-79.231: Process Algebra 9-7

The Syntax and Semantics of CCS (2/2)

Relabeling Let Q be an agent and Σ the set of its visible actions, τ 6∈ Σ. Let Σ′ be a set of
actions and let m: Σ∪{τ}→ Σ′∪{τ} such that m(τ) = τ and ∀α 6= τ : m(α) = m(α).

Then P ::= Q[m] is an agent. If Q
α−→Q′, then Q[m]

m(α)−→ Q′[m]. Agent P is like Q,
but its actions have been obtained by mapping the actions Q through m. Special
case: hiding (m(α) = m(α) = τ).

Parallel Composition Let Q and R be agents. (Q‖R) is an agent.

1. If Q
γ−→Q′ and R

γ−→ R′, then (Q‖R) τ−→ (Q′‖R′).

2. If Q
γ→Q′′, then (Q‖R)

γ→ (Q′′‖R).

3. If R
γ→ R′′, then (Q‖R)

γ→ (Q‖R′′).
Marko Mäkelä

T-79.231: Process Algebra 9-8

On the Syntax and Semantics of Process Algebras

Different process algebras define slightly different structures and computation rules. It

can take some time to learn them, because they are often defined in a compact formal

notation, as in the previous slides.

For the sake of readability, parentheses are often omitted. With parentheses, one would

write like this: U ::= α . ((β . (τ . (U))+ γ . (τ . (U)))).

Question: is the expression U ::= α . (β . τ+γ . τ) .U in accordance with the CCS syntax

we presented, if α,β,γ,τ are names of actions? What about U ::= α . (β+ γ) . τ . U?

There are various short-hand notations and conventions for process algebra. For in-

stance, . Nil can be omitted. Are the expressions above valid CCS, if they make use of

this convention?
Marko Mäkelä

T-79.231: Process Algebra 9-9

An Example of Parallel Composition
The behaviour of the agent α . (β . (δ . Nil‖δ . Nil)+ γ . Nil) is depicted below:

α . (β . (δ . Nil‖δ̄ . Nil) + γ . Nil) β . (δ . Nil‖δ̄ . Nil) + γ . Nil

δ . Nil‖δ̄ . Nil

Nil

δ̄ . Nil δ . Nil
α

β

τ
δ
δ

δ
δ

γ

The transition system was constructed by applying the previously presented semantic
rules for CCS. The states have been labelled with the corresponding agent.

The behaviour of the agent δ . Nil‖δ . Nil includes the interleaved executions of δ and δ.
The parallel composition can be defined to allow only concurrent synchronisation:

α . (β . (δ . Nil‖δ̄ . Nil)\{δ, δ̄}+ γ . Nil) β . (δ . Nil‖δ̄ . Nil)\{δ, δ̄}+ γ . Nil

(δ . Nil‖δ̄ . Nil)\{δ, δ̄}

Nil

α

β
τ

γ

Let P|Q be such a restricted parallel composition. Exercise: define it formally.

Marko Mäkelä

T-79.231: Process Algebra 9-10

Example: Dekker’s Algorithm (1/6)
Let us represent Dekker’s mutual exclusion algorithm for two processes with CCS.∗

Since there is no concept of memory in CCS, storage has to be modelled explicitly. Let
us first define the basic processes: the program code and an one-bit memory:

D

H

E

F

G

noncritical

desire

wrb1

rdb0
enter

exit

wrk1wrk0

wrb0

rdb1

rdko
rdki

wrb0

rdko

rdki

wrb1
M

N

wr1 wr0

rd0

rd1

∗At http://www.tcs.hut.fi/Software/maria/tools/tvt/tvt.html , you can find a more detailed
example using CSP-style parallel composition, which evaluates the fairness of the algorithm.

Marko Mäkelä

http://www.tcs.hut.fi/Software/maria/tools/tvt/tvt.html

T-79.231: Process Algebra 9-11

Example: Dekker’s Algorithm (2/6)

Textually, the basic processes can be written, for instance, as follows:

M ::= rd0 . M +wr1 . N

N ::= rd1 . N+wr0 . M

D ::= noncritical . D+desire. wrb1 . E

E ::= rdb0 . enter. exit . (wrk0 . F +wrk1 . F)+ rdb1 . G

F ::= wrb0 . D

G ::= rdko . E + rdki . wrb0 . H

H ::= rdko . H + rdki . wrb1 . E

Marko Mäkelä

T-79.231: Process Algebra 9-12

Example: Dekker’s Algorithm (3/6)

Dekker’s algorithm comprises two processes and three shared memory places. Let us
construct them from the basic processes by relabeling. If we used CSP-style parallel
composition, the two-port memory K could be defined exactly like the one-port memories
B1 and B2, but in CCS it has to be defined in a different way. Exercise: Why? How?

B1 ::= M[c({rd0 7→ b1
⊥, rd1 7→ b1

>,wr0 7→ b1
>→⊥,wr1 7→ b1

⊥→>})]
B2 ::= M[c({rd0 7→ b2

⊥, rd1 7→ b2
>,wr0 7→ b2

>→⊥,wr1 7→ b2
⊥→>})]

P1 ::= D[c({wrb1 7→ b1
⊥→>,wrb0 7→ b1

>→⊥,wrk0 7→ k1
2→1,wrk1 7→ k1

1→2,

rdb0 7→ b2
⊥, rdb1 7→ b2

>, rdko 7→ k1
2, rdki 7→ k1

1})]
P2 ::= D[c({wrb1 7→ b2

⊥→>,wrb0 7→ b2
>→⊥,wrk0 7→ k2

2→1,wrk1 7→ k2
1→2,

rdb0 7→ b1
⊥, rdb1 7→ b1

>, rdko 7→ k2
1, rdki 7→ k2

2})]
Above, the mapping c(Σ) =

S
α∈Σ{α,α} shortens the relabeling, because the comple-

ment actions need not be enumerated.
Marko Mäkelä

T-79.231: Process Algebra 9-13

Example: Dekker’s Algorithm (4/6)
The full behaviour is Dekker::= K|B1|B2|P1|P2. Because of the structure of these agents
and the symmetry of the CCS parallel composition, the parallel compositions can be
computed in any order. Let us compute BP1 ::= B1|P1, from which BP2 ::= B2|P2 can be
obtained by relabeling. Then Dekker= K|BP1|BP2. First, let us find out B1 and P1:

B1 ::= b1
⊥ . B1+b1

⊥→> . B′1 B′1 ::= b1
> . B′1+b1

>→⊥ . B1

P1 ::= noncritical . P1+desire. b1
⊥→> . P′1

P′1 ::= b2
⊥ . enter. exit . (k1

2→1 . P′′1 +k1
1→2 . P′′1)+b2

> . P′′′1

P′′1 ::= b1
>→⊥ . P1

P′′′1 ::= k1
2 . P′1+k1

1 . b1
>→⊥ . P′′′′1

P′′′′1 ::= k1
2 . P′′′′1 +k1

1 . b1
⊥→> . P′1

Marko Mäkelä

T-79.231: Process Algebra 9-14

Example: Dekker’s Algorithm (5/6)

Let us compute BP1 ::= B1|P1. Now we cannot prefix multiple actions per line, because

there are multiple actions leading to each agent:

BP1 ::= b1
⊥.BP1+noncritical . BP1

+desire. BP1
1

BP1
1 ::= b1

⊥.BP1
1+ τ . BP′1

BP′1 ::= b1
>.BP′1

+b2
⊥ . BP2

1+b2
> . BP′′′1

BP2
1 ::= b1

>.BP2
1+enter. BP3

1
BP3

1 ::= b1
>.BP3

1+exit . BP4
1

BP4
1 ::= b1

>.BP4
1

+k1
2→1 . BP′′1 +k1

1→2 . BP′′1
BP′′1 ::= b1

>.BP′′1 + τ . BP1

BP′′′1 ::= b1
>.BP′′′1 +k1

2 . BP′1+k1
1 . BP5

1
BP5

1 ::= b1
>.BP5

1+ τ . BP′′′′1
BP′′′′1 ::= b1

⊥.BP′′′′1 +k1
2 . BP′′′′1 +k1

1 . BP6
1

BP6
1 ::= b1

⊥.BP6
1+ τ . BP′1

BP1 is very similar to P1, because B1 can participate in every synchronisation P1 “wants.”

The biggest difference are the self-loops b1
⊥ or b1

> in every state.

Marko Mäkelä

T-79.231: Process Algebra 9-15

Example: Dekker’s Algorithm (6/6)
The transition system corresponding to BP1 is a little easier to read:

BP ′′′′1

BP6
1

BP5
1

BP1

BP1
1

BP ′1

BP ′′1

BP4
1

BP3
1

BP2
1BP ′′′1

noncritical

desire

τ

b2
⊥

enter

exit

k1
1→2k1

2→1

τ

b2
>

k1
2

k1
1

τ

k1
2

k1
1

τ

b1
⊥

b1
⊥

b1
>

b1
⊥

b1
⊥

b1
>

b1
>

b1
>

b1
>b1

>b1
>

K|BP1 comprises already 22 states and 92 transitions, and BP1|BP2 comprises 105 and
289, and Dekkerconsists of 193 states and 428 transitions. Could the agents be simpli-
fied by removing τ actions (and hiding uninteresting actions, such as noncritical 7→ τ)?

Marko Mäkelä

T-79.231: Process Algebra 9-16

The Equivalences of Transition Systems
The concept of equivalence (similarity) makes it possible to compare agents with each
other, and to reduce agents. Several different equivalences have been defined. We shall
present two of them:

Trace Equivalence If the finite traces (visible sequences of transitions) of the agents P
and Q are identical, the agents are trace equivalent, P≈tr Q. Examples: α . τ . R≈tr
α . R and α . (β . R+ γ . R) ≈tr α . β . R+ α . γ . R. Let S ::= τ . S. A divergence
(livelock) cannot be told apart from a deadlock: S≈tr Nil.

Failure Equivalence Let there be an agent R, a visible action α and a set of visible

actions Σ. If R
α−→ R′ and ∀β ∈ Σ : 6 ∃R′′ : R′ β−→ R′′, then 〈α,Σ〉 is the failure of R.

The agents P and Q are failure equivalent, P≈f Q, if their failures are identical and
for each α 6= τ,P′,Q′ s.t. P

τ→ ··· α−→ τ→ ···P′ and Q
τ→ ··· α−→ τ→ ···Q′, P′ ≈f Q′

holds. Example: α . (β . R+ γ . R) 6≈f α . β . R+α . γ . R.

Marko Mäkelä

T-79.231: Process Algebra 9-17

Simulation, Bisimulation and Choosing an Equivalence
Let S be the set of all agents and P∈ S,Q∈ S. The agent P simulates Q if there exists
some simulation relation R⊆ S×Ssuch that

1. 〈P,Q〉 ∈ R and

2. if 〈P′,Q′〉 ∈Rand P′ α−→P′′, then there is Q′′ such that Q′ α−→Q′′ and 〈P′′,Q′′〉 ∈R.

Simulation is not an equivalence, since P can simulate Q even if Q does not simulate P,∗
but bisimulation (P simulates Q and Q simulates P) is. The TVT tool can compare and
reduce transition systems with respect to strong bisimilarity relation.

The equivalence should be selected according to the property being verified. For in-
stance, trace equivalence is often too strong, because it does not preserve the truth
values of LTL formulae. If the property has been specified as an LTL formula that does
not contain © connectives, the CFFD and NDFD equivalences are efficient.
∗An equivalence is reflexive, symmetric and transitive.

Marko Mäkelä

	Background
	CCS and CSP
	Prosess Algebra and Transition Systems
	The Basics of Process Algebras
	Special Characteristics of CCS
	The Syntax and Semantics of CCS (1/2)
	The Syntax and Semantics of CCS (2/2)
	On the Syntax and Semantics of Process Algebras
	An Example of Parallel Composition
	Example: Dekker's Algorithm (1/6)
	Example: Dekker's Algorithm (2/6)
	Example: Dekker's Algorithm (3/6)
	Example: Dekker's Algorithm (4/6)
	Example: Dekker's Algorithm (5/6)
	Example: Dekker's Algorithm (6/6)
	The Equivalences of Transition Systems
	Simulation, Bisimulation and Choosing an Equivalence

