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Why Stochastic Analysis?

In reachability analysis and model checking, the timing of the system is seldom modelled

in detail. The focus is on the ordering of events: can they occur in such an order where

the system malfunctions.

In practice, it takes time to perform events. For instance, if a reactive control system does

not operate at expected speed, the consequences can be fatal.

Any system can be assigned some performance requirements, such that there average

number of pending jobs or clients is reasonable, or the waiting times are not too long.

Stochastic analysis can be thought to be based on finite automata or reachability graphs,

whose events are associated with durations or selection probabilities.
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Stochastic Systems and Markov Chains

Stochastic process is a set of random states {θ(t) ∈ S|t ∈ T} for some set of indices T
(which represent moments of time).

Markov chain is a stochastic process where the next state θ(n+1) only depends on the

preceding state θ(n).

The rest of this lecture covers stationary and continuous-time Markov chains whose tran-

sition probabilities are independent of time and which can switch states at arbitary mo-

ments of time. They can be described with a transition rate matrix that defines the prob-

abilities of state transitions per unit of time.

A Markov chain can be thought as a path in some reachability graph whose transitions

are associated with a probability of occurrence or a randomly distributed duration.
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Stochastic Petri Nets (1/2)

Stochastic Petri Nets (SPN) are an extension of place/transition systems where the tran-

sitions are associated with time.

Enabled transitions cannot arbitrarily fire or refrain from firing. The delay between a

transition becoming enabled to the firing of the transition follows a negative exponential

distribution, that is, the transition fires in the time interval 0≤ X ≤ x with the probability

P{X ≤ x}=
∫ x

0 λe−λtdt = 1−e−λx, where λ is the average firing rate.

Since the exponential distribution is memoryless, that is, P{X > t +h|X > t} = P{X >

h}, possible conflicts in the system can be safely ignored.

Ordinary stochastic Petri nets correspond to continuous-time Markov chains.
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Stochastic Petri Nets (2/2)

Generalised Stochastic Petri Nets (GSPN) also include untimed or immediately firing tran-

sitions, which are associated with a weight.

If an untimed transition is enabled in a marking, it fires immediately, producing a new

marking. If several untimed transitions are enabled, their firing probabilities are deter-

mined by the weights. A timed transition may only fire if no immediate transitions are

enabled. GSPNs correspond to semi-Markov processes. They have the same stationary

distribution as corresponding Markov processes.

Deterministic and Stochastic Petri Nets (DSPN) also contain transitions that fire in a con-

stant time. If multiple such transitions can be enabled simultaneously, the analytical meth-

ods are challenged, and one has to resort to simulations.
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Analysing Stochastic Systems
There are computer tools for modelling and analysing stochastic systems, such as Great-
SPN, DSPNExpress, TimeNET and SMART. Unfortunately we are not aware of any free
tools.

Simple systems can be analysed with a reachability analyser and a matrix calculator,
such as Matlab or GNU Octave. Three steps are needed:

1. The reachability graph of the system is generated. If there are immediate transitions,
the events corresponding to them are fused with timed events.

2. The events of the reachability graph are labelled with the firing rates of the transitions,
and the graph is transformed into a transition rate matrix Q

3. The steady state equation is solved and the performance indices of the process are
computed.
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An Example System and its Reachability Graph

p1 p2

p3 p4

p5

p6

p7 p8 p9

newdata start

par1

par2

sync

ok I/O

fail check

There are 38 reachable states and 62 events. When M0(p1) = 1, the state space shrinks:
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Eliminating the Immediate Transitions
The reachability graph can be reduced by fusing the occurrences of immediate transitions
with the preceding occurrences of timed transitions. The result is a Markov chain:

p1 p3
p7

p4
p7

p3
p8

p6

p9

newdata

start,par1

start,par2

par2,ok

par1,fail

par2,fail

par1,ok

I/O

check
We have not yet associated the transitions with

weights or durations. Let us assume that the firing

ratio of the transitions “fail” and “ok” is 5 : 95, that

is, assign them the weights 5 and 95. The weights

of the transitions “sync” and “start” are insignificant,

since these transitions are not part of any conflict.

Let us assign the rates λnewdata = 37,λpar1 = 40,λpar2 = 60,λI/O = 15,λcheck = 2.

Clearly, λstart,par1 = λpar1 and λstart,par2 = λpar2, as “start” is enabled alone. Simi-
larly, we can ignore “sync”.

Attention must be paid on the conflicting immediate transitions “fail” and “ok”: λpar1,ok =
95

95+5λpar1 = 38, λpar1,fail =
5

95+5λpar1 = 2, λpar2,ok = 57 ja λpar2,fail = 3.

Marko Mäkelä



T-79.231: Stochastic Analysis 8-8

Transition Rate Matrix

Let us present the reachability graph as a transition rate matrix Q. The elements of this

matrix, qi, j , i 6= j , correspond to probabilities of firing a transition leading from the state i

to the state j , the transition rate.

Q =




{p1} {p3, p7} {p4, p7} {p3, p8} {p6} {p9}
−37 37 0 0 0 0

0 −100 40 60 0 0
0 0 −60 0 57 3
0 0 0 −40 38 2
15 0 0 0 −15 0
0 2 0 0 0 −2




{p1}
{p3, p7}
{p4, p7}
{p3, p8}
{p6}
{p9}

If no transition is possible to a state, the transition rate is 0. The diagonal elements are

assigned so that the row sums become zero: qi,i =−∑
j 6=i qi, j .
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Solving the Steady State Equation (1/2)

It is possible to define a probability vector π(t) that yields the probability of each state as

a function of time. The limit π = limt→∞ π(t) is called the steady state solution, because

it fulfils the equation π ·Q = 0. Furthermore, the sum of all probabilities is 1, that is,

π ·eT = 1 or π1+ π2+ · · ·+ πn = 1. The condition can be written as a matrix by writing

the same equation multiple times: π ·E = eT. (Here, e is a row vector consisting of ones

and E is a square matrix consisting of ones.)

By adding the resulting matrix equations

π ·Q = 0

π ·E = e

together we obtain π · (Q+E) = e, where we can solve π = e· (Q+E)−1.

Marko Mäkelä



T-79.231: Stochastic Analysis 8-10

Solving the Steady State Equation (2/2)
Let us compute the state probabilities of the reduced reachability graph with GNU Octave:

octave:1> Q=[-37, 37, 0, 0, 0, 0;
0, -100, 40, 60, 0, 0;
0, 0, -60, 0, 57, 3;
0, 0, 0, -40, 38, 2;

15, 0, 0, 0, -15, 0;
0, 2, 0, 0, 0, -2]

octave:2> pi=ones(1,6)*inverse(Q+ones(6)) ∗
pi =

0.176252 0.068646 0.045764 0.102968 0.434756 0.171614
An analytic solution would be more accurate, but in practice, approximate solutions suffice
for plotting graphs (such as the probability of a given state as a function of λnewdata).

∗It would be a little more efficient to write pi=((Q’+ones(6))\ones(6,1))’ .
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Applications of the Steady State Distribution (1/2)

Among other things, the steady state solution indicates that the system spends 43.4%of

its time in the state {p6}. In other words, the transition “I/O” that leaves from the state is

a possible bottleneck.

In Stochastic Petri nets, it is possible to observe the average number of tokens in the

places. In our example system, place p1 contains one token in the state {p1}, and it is

empty in other reachable states. Thus, the average marking of p1 equals the probability

of the state {p1}, 0.176252.

Generally, the average marking of a place is a weighted sum of the marking of the

place in each reachable state, weighted with the state probabilities. For instance, the

marking of the place p3 in the reachable states can be written as the column vector

mp3 = (0 1 0 1 0 0)T. The average marking of p3 is pi*[0,1,0,1,0,0]’ or 0.17161
according to GNU Octave.
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Applications of the Steady State Distribution (2/2)

The probabilities of more complex conditions can be calculated in a similar way. Let us

define a column vector r , whose elements are 1 in those states where the desired prop-

erty holds, and 0 elsewhere. For instance, “p7 or p8 is marked”, that is, r = (0 1 1 1 0 0)T

holds at an arbitrary moment of time with the probability 0.21738.

The expected firing density of a transition can be observed as well. In this case, the

reward function r is defined so that it maps those states where the transition is enabled

to the rate of the transition, and other states to 0. The average firing rate is π · r .

The average firing density of “par1” in our example is pi*[0,40,0,40,0,0]’ or 6.8646.
Because the only pre-place of this transition is p3 which can contain at most one token,

we would have obtained the same result by multiplying the probability that p3 is marked

with the rate, 0.17161·40.
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Summary
Performance analysis is based on state spaces (reachability graphs). If the system com-
prises n reachable states, analysing its performance requires operations on n×n square
matrices. Because it can be computationally very expensive, the model often has to be
simplified in order to reduce the number of states. We presented one way, removing
immediate transitions. Other reduction methods require more detailed knowledge of the
system being analysed.

This lecture only scratches the surface of the topic. We did not discuss different queu-
ing or serving policies (how many clients can be served simultaneously, are the waiting
times resampled when transitions become disabled, etc.) nor other than exponentially
distributed transition durations.

Performance indices can be obtained by simulating the system long enough, for instance
with the MCMC method (Monte Carlo Markov Chain). Often simulation is the only way,
if the transition durations follow different kinds of distributions, or the system has a large
number of reachable states.
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Additional Information

1. Gianfranco Balbo: An Introduction to Generalized Stochastic Petri Nets, pages 217–

266 in Petri Nets 2000: Introductory Tutorial (http://www.daimi.au.dk/PetriNets/

introductions/pn2000_introtut.pdf )

2. Mat-2.111 Stochastic Processes (3 ov)

3. S-38.143 Queuing Theory (3 cr) L
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