
T-79.231 Parallel and Distributed Digital Systems

Reachability analysis

Marko Mäkelä

July 16, 2002



T-79.231: Reachability analysis 6-1

Reachability analysis

Reachability analysis refers to the procedure of

• checking whether a formally described system may reach

– a “bad” state violating the asserted safety properties or

– a loop of events that is against the given liveness conditions

• and visualising a violating execution if one exists.

Usually, reachability analysis requires exploring all reachable states in the system. Some-
times it is possible to make use of the given conditions and forget about some states.

Marko Mäkelä



T-79.231: Reachability analysis 6-2

The basic solution: computing the reachability graph
REACHABILITY-GRAPH(〈S,T,F,W,M0〉)

1 G : 〈V,E,v0〉 ← 〈{M0}, /0,M0〉 ;
2 Markings: stack← 〈M0〉 ;
3 while Markings6= 〈〉
4 do M←Markings.pop();
5 for t ∈ enabled(M)
6 do M′← fire(M, t);
7 if M′ 6∈V

8 then V←V ∪ {M′}
9 Markings.push(M′);

10 E← E ∪ {〈M, t,M′
〉};

11 return G;

The algorithm makes use of two

functions:

• enabled(M) := {t |M[t〉}
• fire(M, t) := [M〉t

When the search stack is replaced

with a search queue, the graph is

traversed breadth first instead of

depth first. Breadth first search

finds the shortest transition path

from the initial marking to an er-

roneous marking. Model checking

liveness requires depth first search,

as some loops need to be detected.

Marko Mäkelä



T-79.231: Reachability analysis 6-3

Implementing reachability analysis
The worst bottle-necks of the preceding algorithm are:

• the loop in the lines 5–10

• the lines 5 and 6: constructing the set of successor states
⋃

t∈enabled(M){fire(M, t)}

• the lines 7 and 8: searching and adding states

The line 10 is rather harmless, since the arcs can be written to a sequential file, unless
also “reverse” arcs are to be written, indexed by the target state. The arcs can omitted as
well and recomputed when generating a counterexample.

The search queue or stack Markingsmay contain either states or state numbers, which
saves memory but requires that in line 4, the state M is retrieved from a “database”
DB :N→V.

Marko Mäkelä



T-79.231: Reachability analysis 6-4

Representing the set of states V
The set V can be represented in two fundamentally different ways. While computing the
set

⋃
t∈enabled(M){fire(M, t)}, the elements of the set M ∈ V are best kept in an “ex-

panded form” so that the expressions of the modelling language can be easily evaluated.

The data structure for the found states V must support the following functions:

• M ∈V: has the state M been found already?

• V←V ∪{M}: add M to the set of reachable states (and assign an index nM to it)

• (Fetch a state by index: DB(nM) 7→M)

The functions in parentheses are only needed if the search stack or queue keeps state
numbers. If V is expressed as a dynamic table DB where each state is stored separately,
it pays off to compact the states to bit strings. For instance, if it is known that the n = 5
clients of a system may be in m= 3 different states, the pairs 〈n,m〉 do not need to occupy
32+32 bits or even 8+8 bits, but only log2dnme= log2d15e= 4 bits.

Marko Mäkelä



T-79.231: Reachability analysis 6-5

Symbolic representations of the state set (1/2)

The state set V can also be represented as a single “lump” that cannot be iterated but

where states can be added or checked for existence.

One way of implementing this kind of a structure is to build up a directed graph, interpreted

as an automaton that accepts exactly those “words” (states) that belong to the set.

Whenever a state is added to the set, the pointer jungle of the graph is modified here and

there. In practice, this kind of a symbolic data structure must be kept in the main memory.

Symbolic data structures are very closely related to the operations and data types of the

language. When each state is stored separately, the operations leading from one state to

another are irrelevant; it must merely be possible to encode each state to a bit string.

Marko Mäkelä



T-79.231: Reachability analysis 6-6

Symbolic representations of the state set (2/2)
One of the best known symbolic data structures is BDD (Binary Decision Diagram) that
was designed with Boolean circuits in mind. BDDs are directed acyclic graphs (folded
trees) containing at most two leaf nodes, 0 and 1, and inner nodes corresponding to the
variables of the system. Each variable node has two outgoing arcs, one for each value the
variable may assume. A BDD represents a formula that holds for exactly those assign-
ments that have been added to it. For instance, let us store the states 〈x 7→ ⊥,y 7→ ⊥〉,
〈x 7→ ⊥,y 7→ >〉 and 〈x 7→ >,y 7→ >〉 in said order to an initially empty set:

0

0

1

x

1

y

0 1

0
0

1

x

1

0
0

1x

0

y

1

0

1

⊥ ¬x∧¬y ¬x ¬x∨y

Adding a state may enlarge or shrink the representation of the set. This kind of methods
are very sensitive of the order in which variables are represented and states are added.

Marko Mäkelä



T-79.231: Reachability analysis 6-7

Shrinking the set of reachable states
Traditional representations of the state set often are the only meaningful choice if the
system being explored has many high-level operations. Then the large number of states
and transitions is a problem. What about trading some processing time for space?

Exploiting the property being checked makes it possible to avoid exploring all possible
behaviours of the system. The major reduction methods are:

• identifying states:

– detecting symmetries and mapping states to each other with permutations

– initialising dead variables to default values

– slicing (before reachability analysis, eliminate those variables and transitions that
do not affect the property being checked)

• partial order reduction methods: reducing the branching degree

Marko Mäkelä



T-79.231: Reachability analysis 6-8

Symmetries (1/2)

For a place/transition net 〈S,T,F,W〉, a symmetry σ : (S→ S)∪ (T → T) is an auto-

morphism (a self-isomorphism of the net) that respects the arc weights:

W(a,b) = W(σ(a),σ(b)).

The symmetry σ of the net can be augmented to a symmetry σ : (S→N)→ (S→N) of

markings M : S→N by defining

(σ(M))(σ(s)) = M(s).

It follows that M′ = [M〉t if and only if σ(M′) = [σ(M)〉σ(t).

Marko Mäkelä



T-79.231: Reachability analysis 6-9

Symmetries (2/2)
A set of symmetries Σ is a symmetry group if and only if it is reflexive, symmetric and
transitive:

1. there is id ∈ Σ such that id(M) = M,

2. if σ ∈ Σ then σ−1 ∈ Σ, and

3. if σ ∈ Σ and σ′ ∈ Σ then (σ′ ◦σ) ∈ Σ.

The symmetry group defines an equivalence relation for markings (and places and tran-
sitions):

M ≡M′ :⇔ (∃σ ∈ Σ : M = σ(M′)).
A marking M is symmetric if and only if

∀σ ∈ Σ : M = σ(M).

Marko Mäkelä



T-79.231: Reachability analysis 6-10

The symmetry reduction method
SYMMETRIC(〈S,T,F,W,M0,Σ〉)

1 G : 〈V,E,v0〉 ← 〈{M0}, /0,M0〉 ;
2 Markings: stack← 〈M0〉 ;
3 while Markings6= 〈〉
4 do M←Markings.pop();
5 for t ∈ enabled(M)
6 do M′← fire(M, t);
7 if ∃M′′ ∈V : ∃σ ∈ Σ : M′′ = σ(M′)
8 then E← E ∪ {〈M, t,M′′

〉}
9 else if M′ 6∈V

10 then V←V ∪ {M′}
11 Markings.push(M′)
12 E← E ∪ {〈M, t,M′

〉}
13 return G;

If M0 is symmetric, the reachable

markings and deadlocks are pre-

served. The liveness of transitions

or the truth values of LTL formulae

are not always preserved.

The worst bottle-necks are finding

the symmetry groups and detecting

symmetric states.

The method can be generalised to

other modelling languages, such as

high-level nets. It may even save

time, as entire subtrees of the state

space may remain unexplored.

Marko Mäkelä



T-79.231: Reachability analysis 6-11

The symmetry reduction method: an example

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»f

t

h e

P

P

P = {1,2}
l ¾

¡
¡

¡
¡¡ª

?

r- -

'

½ ¼6

b
6

¾

$¾

@
@

@
@@I

p p

p p

p
p

p p

p⊕1

p⊕1

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

e1

f1,2
e2

f2
h1 h1,2

f1
h2

6 6

-

-

¾

¾

¡
¡

¡
¡

¡ª

@
@

@
@

@R

l1 l2
l2 l1

r1 r2

b1 b2

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

e1

f1,2

f2
h1 h1,2

6

-

-

¡
¡

¡
¡

¡ª

l1, l2
l2

r1

b1

Clearly, the reachability graph of the dining philosopher system is symmetric. One sym-
metry rotates the philosophers and forks:

σ = {f1 7→ f2, f2 7→ f1, t1 7→ t2, t2 7→ t1,h1 7→ h2,h2 7→ h1,e1 7→ e2,e2 7→ e1}.
As a matter of fact, this σ generates a symmetry group: for instance, id = σ ◦σ and
σ−1 = σ.

Marko Mäkelä



T-79.231: Reachability analysis 6-12

A partial reduction method: stubborn sets

The stubborn set method tries to eliminate some of the enabled transitions when com-

puting the set of successor states, which makes the reachability graph branch less and

become smaller. The method preserves all deadlocks. One variant of it also preserves

the truth values of all LTL formulae not containing the connective©.

The method is based on splitting the transitions T into two sets Ts and T \Ts such that

firing any transition in Ts does not affect the enabledness of the transitions in T \Ts.

In the following commuting diagram, let there be t ∈ Ts and a transition se-

quence τ = (T \Ts)∗. For the properties that hold in M′′′ it does not matter

whether the marking is reached via the path tτ or the path τt.

M M′

M′′ M′′′
? ?
t t

-

-

τ

τ

Marko Mäkelä



T-79.231: Reachability analysis 6-13

Stubborn sets (1/4)

Let there be a place/transition system 〈S,T,F,W〉 with a marking M. Then Ts⊆ T is

stubborn in M if and only if it contains M-enabled transitions and ∀t ∈ Ts:

1. If M[t〉 then (•t)• ⊆ Ts.

2. If ¬M[t〉 then ∃s∈ •t : M(s) < W(s, t)∧ •s⊆ Ts.

The set of all transitions T is trivially stubborn.

It is best to construct smallest possible stubborn sets, since then there will be the least

number of branches in the reachability graph.

Marko Mäkelä



T-79.231: Reachability analysis 6-14

Stubborn sets (2/4)

One stubborn set Ts in M can (inefficiently) be computed as follows:

1. Choose an M-enabled transition t ∈ T: M[t〉. Let Ts = {t}.

2. Choose a transition t′ ∈ Ts (that has not been considered yet):

(a) M[t′〉: The definition will hold by setting Ts← Ts∪ (•t′)•. Return to step 2.

(b) ¬M[t′〉: According to the definition, find a “culprit” place s∈ •t′ that prevents t′
from firing, and let Ts = Ts∪ •s. Return to step 2.

The algorithm terminates when the set Ts does not change during an iteration.

Marko Mäkelä



T-79.231: Reachability analysis 6-15

Stubborn sets (3/4)

STUBBORN(〈S,T,F,W,M0〉)
1 G : 〈V,E,v0〉 ← 〈{M0}, /0,M0〉 ;
2 Markings: stack← 〈M0〉 ;
3 while Markings6= 〈〉
4 do M←Markings.pop();
5 for t ∈ stubborn(M)
6 do M′← fire(M, t);
7 if M′ 6∈V

8 then V←V ∪ {M′}
9 Markings.push(M′);

10 E← E ∪ {〈M, t,M′
〉};

11 return G;

Let us examine the following system:

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

p1 p3 p5

p2 p4

t1 t3

t2

v

v

- - - -

- -

& $

?

If initially Ts⊇ {t2}, (•t2)• = {t3} and
•p3 = {t1} must be added to the set,

because p3 = •t3. We obtain Ts = T.

If the initial choice is Ts = {t1}, the set

will be stubborn as such.
Marko Mäkelä



T-79.231: Reachability analysis 6-16

Stubborn sets (4/4)

¡
¡

¡
¡

¡
¡µ

¡
¡

¡
¡

¡
¡µ

t1

t1

@
@

@
@

@
@I

@
@

@
@

@
@I

t2

t2
¡

¡
¡

¡
¡
¡µ

t3

〈1,1,0,0,0〉

〈1,0,0,1,0〉 〈0,1,1,0,0〉

〈0,0,1,1,0〉 〈0,0,0,0,1〉

Ts = {t1} :

¡
¡

¡
¡

¡
¡µ

t1

@
@

@
@

@
@I

t2
¡

¡
¡

¡
¡
¡µ

t3

〈1,1,0,0,0〉

〈0,1,1,0,0〉

〈0,0,1,1,0〉 〈0,0,0,0,1〉

The magnitude of a stubborn set greatly depends on which enabled transition is chosen
first and how the “culprit” places s are chosen.

The smallest possible stubborn set can be obtained with the deletion algorithm. It starts
from the set Ts = T. A transition is removed, and further transitions will be removed until
the set is stubborn again. The insertion algorithm described earlier can be improved by
utilising Tarjan’s algorithm for computing strongly connected components.

Marko Mäkelä



T-79.231: Reachability analysis 6-17

Translating modelling formalisms

It appears easy to implement reachability analysis for any computing system, but in prac-
tice, many systems do not allow their state to be stored efficiently and restored later. It is
best not to reinvent the wheel and to use dedicated reachability analysis tools.

If the systems being explored have already been described in some computer-interpreted
language and if there are many such descriptions, it does not make sense to translate
them by hand. The difficulty of writing an automatic translator depends on how complex
the source language is. Often the translator can be restricted to a subset of the language.

When translating descriptions, it is useful to simplify them and omit everything that is
irrelevant for checking the desired properties. Some constructs can be expressed more
compactly with Petri nets than with a programming language. The quality of the translation
has great impact on the size of the reachability graph.

Marko Mäkelä



T-79.231: Reachability analysis 6-18

Representing counterexamples (1/2)

When a tool detects that the system violates its requirements, it must somehow report it
to the user. It would be frustrating for the user to know that there is an error somewhere in
the system. It is much more useful to represent a counterexample, a violating execution.

An execution can be represented as a sequence of states and events where the states
are labelled with the values of variables and the events are labelled with the names of the
transitions. If the input of the reachability analyser has been translated from some other
description, the labels and the notation would better follow the original conventions. In
other words, also the counterexamples must be translated!

Representing the executions with such chains is not always natural. Sometimes it is more
convenient to explore the execution in a debugger-like tool, in an animation where one
source code line or structure is highlighted at a time. Message sequence charts are
suitable for representing executions of message-passing systems.

Marko Mäkelä



T-79.231: Reachability analysis 6-19

Representing counterexamples (2/2)
¶

µ

³

´idle

¶

µ

³

´reserving

¶

µ

³

´active

¶

µ

³

´idle

¶

µ

³

´reserving

¶

µ

³

´active
¶

µ

³

´

¶

µ

³

´

available

available

¶

µ

³

´allocated

XXXXXXXXXXXz res req»»»»»»»»»»»9res ack

»»»»»»»»»»»9rel req $

& - rel ack

$

&- res req»»»»»»»»»»»9res ack

$

?

res req

Â

Á

¿

À

Â

Á

¿

À

Â

Á

¿

À

Â

Á

¿

À

Â

Á

¿

À

Â

Á

¿

À

Â

Á

¿

À

Â

Á

¿

À

Â

Á

¿

À

Â

Á

¿

À

Â

Á

¿

À

?

?

?

?

?

?

?

?

?

%

'-

available

available

allocated

allocated

allocated

allocated

allocated

allocated

allocated

allocated

available

idle

reserving

reserving

reserving

reserving

reserving

active

idle

reserving

active

active

!res req

?res req
!res ack

!rel req

!res req

?res req
!res ack

?res ack

?rel req
!rel ack

?res req
!res ack

?res ack

?rel ack

A message sequence chart conveys the error better than a transition sequence. A chart
represents a higher-level language, since it corresponds to several transition sequences.

Marko Mäkelä


	Reachability analysis
	The basic solution: computing the reachability graph
	Implementing reachability analysis
	Representing the set of states V
	Symbolic representations of the state set (1/2)
	Symbolic representations of the state set (2/2)
	Shrinking the set of reachable states
	Symmetries (1/2)
	Symmetries (2/2)
	The symmetry reduction method
	The symmetry reduction method: an example
	A partial reduction method: stubborn sets
	Stubborn sets (1/4)
	Stubborn sets (2/4)
	Stubborn sets (3/4)
	Stubborn sets (4/4)
	Translating modelling formalisms
	Representing counterexamples (1/2)
	Representing counterexamples (2/2)

