T1-79.231 Parallel and Distributed Digital Systems

An Introduction to the MARIA Tool
Marko Méakela

July 16, 2002

T-79.231: An Introduction to the MARIA Tool 4-1

MARIA

MARIA (Modular Reachability Analyser for Algebraic System Nets) is a tool for analysing
the logical consistency of concurrent systems, such as data communication protocols
or parallel processes communicating via shared memory. The system is described in
a textual language whose expressions, data types, operations, and grammar resemble
common programming languages, such as C or Java.

Given a model system, MARIA can either perform interactive simulations of the system’s
execution or it can exhaustively search the reachable state space of the system. During
exhaustive search, it can verify correctness properties expressed in linear temporal logic
formulae. The search may be sped up by compiling the model to executable C functions
or by applying parallel processing.

Marko Makela

T-79.231: An Introduction to the MARIA Tool

4-2

Example: changing money (1/4)

This place/transition system describes a customer who wants to change coins to smaller
ones. In the depicted configuration, the customer has two (5) coins and one @0.

5 big=5
customerl @ small=1

10
big=10
customerb @ smalke1
2
‘ big=10
customerl0 @ " smal=5

cashierl
@ cashier5
Q cashier1l0

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-3

Example: changing money (2/4)

Place/transition systems work at a fairly low level. Often it is clearer to use higher-level
formalisms, such as algebraic system nets:

customer big . cashier
110 1‘big ‘ (small) small 35
@4 cashier blg > small customer =@

Note that a (2) coin could be introduced without modifying the transition definition.

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-4
Example: changing money (3/4)

MARIA constructed the reachability graph of the model shown on the next slide. The

output was slightly edited to add colours and to simplify the edge labels, which now denote

the “big” money taking part in the transaction, and blue edges denote actions where the

customer’s money is changed to smaller units.

10

5 @ 20 10
customer:4#5 @
5 cashier:10#1,5,10
5
s | @5 8@ Ve
customer:5#1,3#5 <+ —. @1 3(3) _y
ier: 10 customer:5#1,5,10
@2 3(3) 5 _ cashier:5#1,2#5,10 —— mer:s#1,9,
— cashier:5#1,4#5 5
customer:10#1,2#5 10
cashier:3#5,10 M Q @ 202
—*customer:10#1,10
10 //'Cashier:S#S

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-5

Example: changing money (4/4)

typedef unsigned (1,5, 10, 50, 100, 500) money _t ;

place money_t : 10, 2#5;

place money t: 3#5, 10#1;

trans smaller

in {

place Lbig; small,

place : small, (big/small- 1)#small; big | cashier | ((big/small)-1)# cashier
gate big > small small

out {

plggg b p'a‘lg‘ze : smaller: bigger:

}.p - P small<big small<big

};an{s bigger small,

place - small, (big/small— 1)#small; customer | ((big/small)-1)# customer big
place big; small

gate big > small

out {

place . place

place : place

I3

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-6

MARIA data types (1/2)

The data type system of MARIA was designed with high-level programming and specifi-
cation languages in mind. The basic types are:

bool false ,true truth values

char 0. \377 8-bit characters

unsigned 0 ,1,... non-negative integers (usually 32 or 64 hits)
int ...,-1,0,1,... signed integers (usually 32 or 64 bits)

enum enumerations

Composite data types can be defined by applying the following constructs:

struct { int a; char b; } {0, X} structure, tuple or record
union { int @; char b; } b ="X union (one of the alternatives)
int(0..2)[bool] {0,1} array

bool[queue 2] {false,false} a queue of 0..2 truth values
char[stack 3] {7’} a stack of 0..3 characters

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-7

MARIA data types (2/2)

All data types can be combined arbitrarily. If you need to define a queue of arrays of
stacks indexed by records, go ahead.

The domains of data types can be restricted by applying constraints. We have already
done so for integer types, as in the definition int(0..2)[bool] on the previous slide.
Constraints do not need to be single ranges: it is possible to define multiple ranges:
unsigned(..3,10,15..20) . Also composite data types can be constrained.

MARIA defines a total order for all its data types. For any value X, the successor and
predecessor operations (+Xx and |x) are defined in such a way that the successor of
the maximum value is the minimum value, and the predecessor of the minimum value
is the maximum value. If X is an unsigned(0..4) , you can simply write +X instead of
something like (X+1)%5 .

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-8

Basic MARIA expressions (1/2)

The expressions in the MARIA input language are heavily based on the C, C++ or Java
programming languages. There are no pointers or references or method calls, or even
assignments™ (not even such as x*=3 or x++).

There are a few new operators in addition to the predecessor and successor operators
that were introduced in the previous slide. Some unary operators are just short-hand
notation: <int vyields the smallest value of the built-in int data type, >bool vyields true |,
and #char vyields 256, the number of different char values.

The if-then-else operator condition?true_expr:false _expr of C has been gener-
alised to a selection operator. For instance, if X is an unsigned(0..4) , the expression
x?3:2:1:.0:4 is equivalent to |x .

*In Petri nets, expressions do not have side effects. All effects are modelled with transitions.

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-9

Basic MARIA expressions (2/2)

The active component of a union value can be determined with the binary IS operator.
For instance, if X is a union whose components are named a, b and ¢, the condition X IS
b holds only when the second component of the union is active.

The unary is operator is used for data type conversions. For instance, a signed value ¢
can be converted to unsigned with is unsigned ¢ . An error is reported if C is negative.

For queues and stacks, the unary / and %operators report the used and the available
capacity, respectively. The binary + operator inserts an item and the unary - removes
an item. The unary * reads an item. The default access point can be overridden by
specifying an integer index between [and | brackets: -b[2] is a copy of the queue or
stack b without its third item. Indexing starts from zero, the default index.

Please refer to the user’s guide for a detailed list of all operators.
Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-10

Multi-set operations in MARIA

Multi-sets are just like sets, but an item can be contained several times in a multi-set. For-
mally, if Ais a set, any multi-set 1 of A can be represented as 1. A— N. A “conventional”
set A’ C A could be written as A’ : A — {0, 1}.

Only a fraction of the built-in multi-set operations of MARIA is needed for basic modelling.
When a multi-set is expected, singleton items are converted automatically. Multi-sets can
be combined by separating them with commas, like in 10,2#5 , which is equivalent to
10,5,5 . The binary # operator multiplies the amount of items in a multi-set.

The multi-set summation operator may be useful when specifying an initial marking. The
MARIA notation for | Jqycp UeEQ)\{d}{<d,e>} isD d: D e (e != d): {de}

Other multi-set operations are usually used in conjunction with more advanced features
of MARIA, such as specifying the desired logical properties of the model.

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-11

Defining the data structures: typedef and place

Any non-trivial computing system operates on data. In MARIA, two constructs are related
with data structures: typedef (data type definition) and place (storage definition).

[** a data type for philosophers or forks */
typedef unsigned (1..4) ph_t;
[** the avallable forks (0 to 4); initially all present */
place fork (0.#ph t) ph t: ph_t f. f;
[** the thinking philosophers (initially all of them) */
place thinking (0..#ph_t) ph_t: ph_t ph: ph;
[** the hungry philosophers (initially none) */
place hungry (0..#ph_t) ph_t;
[** the eating philosophers (initially none) */
place eating (0..#ph_t) ph_t;
Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-12

Advanced place features

Although it is not necessary to define the capacity (the allowed number of tokens) of a
place, it is a good practice to do so, since the limits can be exploited in the analysis, and
they can help to catch errors. The same applies to data type definitions: there is no need
to assign a name to each data type:

[** unconstrained place that contains pairs */
place pairs struct { int a; char b; }. 2#{ 0, X' };

On the other hand, it is possible to impose even tighter limits. In our model of dining
philosophers, only those philosophers who are not hungry or eating can be thinking:

place thinking (0..#ph_t) ph_t: (ph_t f. f)
minus place hungry minus place eating;
Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-13

Transition definitions (1/3)

Transformations on data are the most interesting aspect of any model of computation. In
high-level Petri nets, there is only one type of actions, high-level transitions with:

e local variables (defined implicitly in MARIA)
e input and output arcs labelled with multi-set-valued expressions
e guards or gates that restrict the valuations on local variables

e additional features, such as priorities, fairness conditions or nondeterminism

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-14

Transition definitions (2/3)

The transitions of our dining philosophers model could be defined like this:

trans left

in { place thinking: ph; place fork: ph; }

out { place hungry: ph; };

trans back

in { place eating: ph; }

out { place thinking: ph; place fork: ph, +ph; };

Exercise: How would you define trans right ?

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-15

Transition definitions (3/3)

In the money-changing example, we wrote expressions like place customer on output
arcs. The construct is short-hand notation for the total value of the transition’s input arcs
connected to the place. In that example, we also defined restrictions on the valuations by
using the gate keyword:

trans smaller

In { customer: big; cashier. small,(big/small-1)#small; }
out { cashier. place customer; customer: place cashier; }
gate big > small;

Why don’t we simply write (big/small)#small on the second input arc? MARIA takes a
little performance shortcut and applies a unification algorithm on input arcs. The value of
small could not be determined from such an expression, since the multiplicity big/small
cannot be evaluated without knowing the value of small .

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-16

Nondeterminism (1/2)

In high-level Petri nets, nondeterminism has traditionally been modelled by defining a
constant place that contains all the possible values, and by binding a variable from the
place. In MARIA, such places can be identified with the const keyword:

[** all philosophers who can be picked randomly */

place random (#ph t-1) ph_t const: ph_t ph (ph !'= <ph_t): ph;
[** pick a random philosopher */

trans random

In { place random: p; /* ... * }

out { place random: p; /* ... * };

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-17

Nondeterminism (2/2)

When a nondeterministic value is not needed in any input arc expressions, the more
efficient nondeterminism operator can be used on an output arc:

[** change the identity of a thinking philosopher */

trans random_think

In { place thinking: ph; }

out { place thinking: ph_t p! (p != <ph_t && p != ph); };

The condition is optional. When the value of the variable is needed only once, also the
variable name can be omitted, and the expression would simply be ph_t! .

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-18

Specifying state properties (1/2)

A model of a computing system is not very useful, if nothing is stated about the desired
properties of the system. Sure, an automated tool can explore all reachable states of the
model and report any evaluation errors or deadlocks, but it cannot do much beyond that.

Let us assume that we want to verify if the forks can run out in our dining philosopher
model. We could do this either by adjusting the capacity constraint of the fork place, or
by writing a reject formula:

[** the avallable forks (always at least 1) */
place fork (1.#ph t) ph_t: pht f. f;

[** report states where no forks are available */
reject place fork equals empty;

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-19

Specifying state properties (2/2)

By default, MARIA does not report any deadlocks (states where no transitions are en-
abled) it encounters. To have all encountered deadlocks reported, specify deadlock
frue . Uninteresting deadlocks can be filtered out with a condition:

[** report all deadlocks where forks are available */
deadlock !(place fork equals empty);

The reject and deadlock formulae can be any conditions on the state. Please refer to
the user’s guide for advanced multi-set operations.
If areject or deadlock formula evaluates to the special value fatal , the analysis is

stopped. The short-circuit evaluation of || , &&and ?: is very useful here:

[** halt if an unexpected deadlock occurs */
deadlock !(place fork equals empty) && fatal;

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-20

Editing MARIA Models

MARIA models can be edited with any text editor. Both CRand LF are accepted as white
space, so there should not be any problems with Apple or Microsoft systems.

If you are using GNU EmACS 20 or 21, you may find the file pn-mode.el useful. It is
based on cc-mode (which is the default editing mode for C-like languages) and provides
smart indentation and syntax highlighting, which makes it easier to read and write MARIA
models.

The MARIA user’s guide contains brief instructions for setting up the editing mode and
syntax highlighting in EMACS.

If you want to use other types of identifiers than [A-Za-z_|[A-Za-z0-9]* , you can in-
clude the names in double quotes like this: place "Mdbius strip” . The only character
that is not allowed in identifiers is the NULcharacter "\0"

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-21

Simulating and exploring a model (1/3)

Many people prefer to construct a formal model of a system in small steps. The interactive
simulator in MARIA supports this way of working. At any time, MARIA can be invoked to
check the syntactical correctness of the model and to compute the initial marking. For
example, let us examine our model of dining philosophers:

>maria -m dinner.pn
@0%how
unprocessed state (
fork:

1,2,3,4

thinking:

1,2,3,4

)
@0%ide thinking; visual show

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-22

Simulating and exploring a model (2/3)

We requested a graphical view of the state, without the contents of the thinking place.
After clicking the left mouse button on the rectangle that represents the initial marking,
the display looks like the following:

@0 fork:1,2,3,4
4
|eft |eft left left
ph:1 / ph:2 ph:3 ph:4

fork:1,2,3
hungry:4

fork:1,3,4
hungry:2

fork:1,2,4
hungry:3

@4

(@4 (@]

The state space of the system can be explored interactively by left-clicking on the states
of interest. Clicking and holding down the right mouse button over a node, arc or the
graph background reveals a menu with the applicable choices.

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-23

Simulating and exploring a model (3/3)

With the visualisation interface, it is possible to input almost all commands. If you prefer
a textual interface or in case the graphical interface is unavailable for some reason, you
can find the MARIA query language commands in the user’s guide.

One thing that cannot easily be accessed from the graphical interface is the verification
of temporal properties. Suppose that we want to know if the forks will eventually run out
in all executions starting from the initial state:

>maria -m dinner.pn -p Ibt

@0%> place fork equals empty

(command line):2:constructing counterexample

(command line):2:counterexample path:

(command line):2: @0 @1 @8 @8 @O0

@0%xit
Graphical display can be requested by prepending the formula with visual

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-24

Exhaustive Reachability Analysis (1/2)

The best way to verify reject and deadlock properties and to detect all evaluation errors
of a model is exhaustive breadth-first or depth-first analysis. In these modes, MARIA runs
silently (unless it is requested to report the number of explored states and arcs with the
-E option) until the whole state space has been explored or a fatal error occurs.

For optimal performance, the disk files that represent the reachability graph should be
kept on a local disk. Create a subdirectory on the local disk and switch there:

>mkdir /tmp/maria-$USER; cd /tmp/maria-$USER

>maria -b ~/dinner.pn -e exit

deadlock state @27

"dinner.pn": 34 states, 88 arcs
You can later explore the generated reachability graph by invoking MARIA with the -g

option. You could also verify temporal properties in this way: maria -m ~/dinner.pn
-e '<> place fork equals empty’ -e exit

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-25

Exhaustive Reachability Analysis (2/2)

When you are analysing a small model that generates a big reachability graph,” you can
try the -C option of MARIA to compile the model to executable C code. The option takes
one parameter: the name of the directory where the code will be created.

For big models, you can try one of the -P, -M or -L option together with -e breadth or
-e depth . With that option, no reachability graph is generated, but instead the set of
reachable states is approximated with a hash-based memory structure. If a hash collision
occurs (never for -L), some parts of the state space will not be explored. No liveness
properties can be verified with this option.

*A big model can generate a small state space; there is no rule of thumb here.

Marko Makela

T-79.231: An Introduction to the MARIA Tool 4-26

Conclusion

MARIA aims to be an easy-to-use formal tool for analysing the behaviour of concurrent
and distributed systems. The modelling formalism is powerful, since it was designed with
high-level programming and specification languages in mind.

The analyser can be interfaced both to higher-level formalisms (such as the CCITT Spec-
ification and Description Language, or a subset of the Java programming language) and
to lower-level formalisms, such as low-level Petri nets (LOLA, PEP, PROD) and labelled
transition systems.

For more information, visit the MARIA home page at the address
http://www.tcs.hut.fi/maria/

and contact us.
Marko Méakela

http://www.tcs.hut.fi/maria/

	Maria
	Example: changing money (1/4)
	Example: changing money (2/4)
	Example: changing money (3/4)
	Example: changing money (4/4)
	Maria data types (1/2)
	Maria data types (2/2)
	Basic Maria expressions (1/2)
	Basic Maria expressions (2/2)
	Multi-set operations in Maria
	Defining the data structures: typedef and place
	Advanced place features
	Transition definitions (1/3)
	Transition definitions (2/3)
	Transition definitions (3/3)
	Nondeterminism (1/2)
	Nondeterminism (2/2)
	Specifying state properties (1/2)
	Specifying state properties (2/2)
	Editing Maria Models
	Simulating and exploring a model (1/3)
	Simulating and exploring a model (2/3)
	Simulating and exploring a model (3/3)
	Exhaustive Reachability Analysis (1/2)
	Exhaustive Reachability Analysis (2/2)
	Conclusion

