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High-Level Nets
Place/transition systems are not suitable for modelling bigger systems:
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Generalising Place/Transition Nets (1/2)

Another problem place/transition nets have is that the tokens are equal and indistinguish-

able. The net on the previous slide depicts a database distributed to three processors.

What if the tokens were assigned data types and values?

v v v
½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

? ? ?

t1 t2 t3

? ? ?

=⇒

[1,2,3]
¾

½

»

¼

¾

½

»

¼

T

?

?

[x]

[x]

The transitions t1, t2 and t3 are instances of the same operation T for different actors x:

tx =̂ 〈T,x〉.
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Generalising Place/Transition Nets (2/2)

The marking (state) of a place/transition system is a mapping from the places s∈ Sto the
numbers of tokens they contain: S→N.

A transition is enabled if its each input place contains at least as many tokens as the
input arc weight indicates. When an enabled transition fires, the input arc weights will be
subtracted from the input places and the output arc weights will be added to the output
places.

In a high-level net, the marking of a place s∈ S is not an integer n ∈ N but a mapping
from its data type Ds to integers, Ds→ N. Thus, the marking indicates the number of
tokens of each value separately. The arc weights are generalised to similar mappings, arc
expressions. The transitions are generalised by introducing variables and optional guard
expressions. Arc and guard expressions may refer to variables.
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Markings and arc expressions in a high-level net (1/2)

A place of a high-level net corresponds to a set of places in the underlying place/transition

net, according to the data type domain of the high-level place. Similarly, a high-level

transition corresponds to a number of low-level transitions, one for each possible valuation

for the variables.

Formally, the marking of a high-level net is a mapping S→ (D →N) where D =
⋃

s∈SDs

is the union of the data types, a.k.a. sorts.

The marking of a place/transition system M : S→ N : M(sk) 7→ nsk can be written as⋃
s∈S{〈s,ns〉}. It is more difficult to write a high-level marking M′ : S→ (D → N) :

M′(sk) 7→M′
sk

where M′
sk

(dl) 7→ n〈sk,dl 〉 in a similar way:
⋃

s∈S
⋃

d∈Ds

{〈
s,〈d,n〈s,d〉〉

〉}
.
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Markings and arc expressions in a high-level net (2/2)

A multi-set or a bag differs from a set by being able to contain several copies of a single

item. Formally, the multi-sets on the set A are of the form A→N. The multi-set A(ak) 7→
nk can be written either as a formal sum n1‘a1+n2‘a2+ · · · or with the bracket notation

[a1,a1︸ ︷︷ ︸
n1

,a2,a2,a2︸ ︷︷ ︸
n2

, . . .]. In the sum, items with zero multiplicity are omitted.

Arc expressions and high-level markings can be represented in a compact way as multi-

sets. For singleton multi-sets, the brackets are often omitted: [x] is written x.

There are several variants of high-level nets, such as predicate/transition nets (Pr/T nets)

and coloured nets. In the following, we shall focus on algebraic system nets that are

based on many-sorted algebras.

Marko Mäkelä



T-79.231: High-Level Nets 3-6

Understanding high-level nets (1/3)

The data model of high-level nets (e.g. algebraic, many sorted or coloured nets) greatly

differs from place/transition nets. The major additions are:

• data types D (also known as colours or algebraic sorts)

• high-level places p that contain multi-sets of typed tokens

– the marking (or state) of a high-level place p is a multi-set of the place’s data

type: M(p) = (D →N)

– in the underlying low-level net, there is a place for each 〈p,d〉 pair, d ∈D
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Understanding high-level nets (2/3)

The transitions in a high-level net have input and output arcs, just like transitions in low-
level nets. High-level arcs are labelled with expressions that must evaluate to multi-sets
that match the data types of the attached places.

Usually, the arc expressions refer to variables. In theory, the value of a variable is selected
nondeterministically from the domain of the variable. In practice, for efficiency reasons,
high-level Petri net analysis tools usually derive the values for variables from the input arc
expressions and the markings of the input places.

In the underlying low-level net, there is a transition for each valuation that can be assigned
to the variables of a high-level transition. It is possible to restrict these valuations by
specifying conditions (guards or gates) on them, e.g. x 6= y∧z< y.∗
∗Although equality conditions, such as x = y+ z, are possible, there often is a more efficient way: just
eliminate one of the variables, e.g. replace all occurrences of x with y+z.
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Understanding high-level nets (3/3)

High-level Petri nets can be viewed as computing systems that operate on shared data
(the markings of the high-level places). In a sense, the high-level places can be under-
stood as global variables and the high-level transitions as some kind of guarded assign-
ment statements that operate on the data.

When studying or constructing Petri net models, it is often helpful to recognise different
flows in the system being modelled: the control flows of the local entities, and various
information flows. In many cases, these flows are clearly visible in the graphical repre-
sentation of the net. Sometimes the places that represent a flow are folded.

Next we shall introduce the system of dining philosophers. There are n philosophers and
forks at a round table. Each philosopher needs two forks in order to eat: first the left one
and then the right one.
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Folding nets: dining philosophers (1/2)
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Folding nets: dining philosophers (2/2)

The model becomes much more compact when the places representing philosophers and

forks are folded. The two flows of the system are still visible after the transformation:
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It is a matter of taste whether folding the philosopher status places improves readability.

The more places are folded, the more flexible is the operation of the transitions. In the

extreme case, any model can be folded to one place and one transition.
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Algebraic system nets (1/3)
In algebraic system nets, there are two kinds of data types: basic sorts and correspond-
ing multi-set sorts. The variables of transitions belong to the basic sorts, while the arc
inscriptions and markings are sorted over multi-sets. There are two predefined basic
sorts: truth values B= {⊥,>} and natural numbers N= {0,1,2, . . .}. For simplicity, we
shall identify algebraic sorts with their support, the set of values belonging to the sort.

In many-sorted algebras, functions are operations and expressions are terms, including

• variables (belonging to a sort): x, and

• operations, whose parameters are sorted terms: f (),g(x,y),g( f (),g(y,x)).

Constants are parameterless operations. For a term t ∈ T(X), the evaluation β̄(t) is
derived from the assignment β : x 7→ · · · as follows. The evaluation of a variable x ∈ X
is looked up from the assignment, β̄(x) = β(x), and the evaluation of an operation term
g(x,y) is obtained by applying the operation g to the parameters β̄(x) and β̄(y).
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Algebraic system nets (2/3)
The quadruple Σ = 〈N,A ,X, i〉 is an algebraic system net if

• N = 〈S,T,F〉 is a finite net,

• the elements of Sare variables over multi-set sorts,

• A is a many-sorted multi-set algebra (BSIG-algebra),

• X is a variable set of A , X∩S= /0, and

• i : S∪T ∪F → TBSIG(X) is an inscription of the net, as follows:

– the initial marking inscription i(s) ∈ TBSIG( /0) has the sort of the place s∈ S,

– the inscription of the arc f ∈ F ( f = 〈s, t〉 or f = 〈t,s〉) (arc inscription) i( f ) is
sorted according to the pre- or post-place s of the transition t, and

– the guard i(t) of a transition t ∈ T is sorted over B.
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Algebraic system nets (3/3)

Let there be a net N = 〈S,T,F〉 and an algebraic system net Σ = 〈N,A ,X, i〉. Let β /0 :
/0→D be the empty assignment.

The initial marking of the net Σ is M0 : S→ (D →N) where M0(s) = β̄ /0(i(s)).

The pre- and post-substitutions of the transition t ∈ T are t−, t+ : S→ T(X):

t−(s) =
{

i(s, t) if 〈s, t〉 ∈ F
[] otherwise,

t+(s) =
{

i(t,s) if 〈t,s〉 ∈ F
[] otherwise.
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The firing rule of algebraic system nets

1. The β-instance tβ of a transition t ∈T is M-enabled, M[tβ〉 if ∀s∈S: M(s)≥ β̄(t−(s))
and β̄(i(t)) =>. (Firing condition)

2. An M-enabled transition instance tβ may fire, producing the successor marking

M′ := [M〉tβ for which M′(s) = M(s)− β̄(t−(s))+ β̄(t+(s)). (Firing rule)

3. The successor markings of M are M [〉 :=
⋃

M∈M
⋃

t
⋃

β
{{[M〉tβ}

∣∣ M[tβ〉
}

.

4. The reachable markings of M are [M 〉 := M [〉∗ = M ∪M [〉∪M [〉[〉∪ . . ..
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Modelling with high-level nets

• Next, we shall model the alternating bit protocol in different ways.

• When modelling with high level nets, one should decide

1. which parts of the system are modelled with the net structure and

2. which parts are modelled with the inscriptions.

• Since each place/transition system is also a high-level net, the model presented in

the first lecture represents the case of modelling everything with the net structure.

• In the other extreme, the net consists of one place and one transition.
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Alternating bit protocol (1/4): place/transition system
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Alternating bit protocol (2/4): folding the bit

Clearly, the place/transition net contains symmetries. Let us fold the variable and channel

places representing the state of the alternating bit.
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Alternating bit protocol (3/4): folding the reception

The transitions for receiving unexpected and expected messages can be folded:
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Alternating bit protocol (4/4): folding the channels

Next, we fold the data channel (sb and s) and the acknowledgement channel (kb and k).

The domain of these places is {λ,0,1}, where λ represents the empty channel.
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The transitions must now be guarded. (It is customary to omit trivial guards >.)
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Unfolding a high-level net

An algebraic system net can be unfolded to a place/transition net.

1. A place s is unfolded by constructing a low-level place sd for each possible token

value d ∈Ds.

2. A transition t corresponds to a number of low-level transitions tβ; one for each valid

assignment β such that β̄(i(t)) =>.

3. The arcs are unfolded by connecting the places sd and transitions tβ: W(sd, tβ) =
β̄(t−)(s)(d) and W(tβ,sd) = β̄(t+)(s)(d).

4. Finally, unconnected places are removed, and the initial marking is unfolded.

An unfolded net can be infinite or very large.
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Unfolding a high-level net: example and remarks
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In addition to unconnected places, an unfolded net may contain dead transitions that will
never be enabled. Generally, they can only be removed by computing the reachability
graph. The number of dead transitions can be reduced by defining redundant guards.

If there are no transition guards, the unfolded nets will be very symmetrical.

If there are large data domains or many variables, the unfolded net will become very large.
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