
T-79.231 Parallel and Distributed Digital Systems

Introduction

Marko Mäkelä

August 1, 2003



T-79.231: Introduction 1-1

Autumn 2003

Lectures: Teemu Tynjälä, Teemu.Tynjala@nokia.com
Exercises: Jukka Honkola, 451 5244, Jukka.Honkola@hut.fi
Accomplishing: Examination and obligatory home assignments

(minimum amount of points; opportunity to improve the grade)
Prerequisites: T-79.144 Logic in computer science, foundations

T-79.148 Foundations of Theoretical Computer Science

(This course corresponds to T-79.179, which is lectured in Finnish.)

Marko Mäkelä

mailto:Teemu.Tynjala@nokia.com
mailto:Jukka.Honkola@hut.fi
http://www.tcs.hut.fi/Teaching/T-79.144/
http://www.tcs.hut.fi/Teaching/T-79.148/
http://www.tcs.hut.fi/Teaching/T-79.179/


T-79.231: Introduction 1-2

Teaching material

Marko Mäkelä: lecture slides (from the course home page or from Edita)
Marko Mäkelä: MARIA user manual: http://www.tcs.hut.fi/Software/maria/

Other reading

Tadao Murata: Petri Nets: Properties, Analysis and Applications (in lecture notes)

Javier Esparza
& Stephan Merz: Model Checking (from the home page)

Robin Milner: Communication and Concurrency
Wolfgang Reisig: Elements of Distributed Algorithms:

Modeling and Analysis with Petri Nets

Marko Mäkelä

http://www.tcs.hut.fi/Software/maria/


T-79.231: Introduction 1-3

Announcements

• Home page http://www.tcs.hut.fi/Teaching/T-79.231/

– weekly exercises

– home exercises

• Discussion group nntp://news.tky.hut.fi/opinnot.tik.rhj

– general quick announcements

– discussing the exercises

Marko Mäkelä

http://www.tcs.hut.fi/Teaching/T-79.231/
nntp://news.tky.hut.fi/opinnot.tik.rhj


T-79.231: Introduction 1-4

The objective of the course

The course aims to give the necessary skills for modelling parallel and distributed systems

and for formulating and verifying requirements on these systems.

• Modelling: Petri nets, transition systems and process algebra

• Formulating properties: temporal logic

• Verifying properties: reachability analysis, using tools

Marko Mäkelä



T-79.231: Introduction 1-5

Related courses

T-79.186 Reactive systems
T-79.190 Testing of Concurrent Systems
T-79.193 Formal Description Techniques for Concurrent Systems
T-106.530 Embedded Systems
T-106.520 Distributed Systems
T-79.146 Logic in Computer Science: Special Topics I
T-79.185 Verification

Marko Mäkelä

http://www.tcs.hut.fi/Studies/T-79.186/
http://www.tcs.hut.fi/Studies/T-79.190/
http://www.tcs.hut.fi/Studies/T-79.193/
http://www.cs.hut.fi/Studies/T-106.530/
http://www.cs.hut.fi/Studies/T-106.520/
http://www.tcs.hut.fi/Studies/T-79.146/
http://www.tcs.hut.fi/Studies/T-79.185/


T-79.231: Introduction 1-6

Parallel and distributed systems: what are they?

• parallelism: events occur simultaneously (concurrency), and there are alternative
execution orders (nondeterminism)

• distribution: the control of the system is not fully centralised

A distributed system is one on which I cannot get any work done, because a
machine I have never heard of has crashed. L. Lamport

• asynchrony: the system components are only synchronised via message passing

• reactivity: the system operates continuously, reacting on external events

Marko Mäkelä



T-79.231: Introduction 1-7

Parallel and distributed systems: designing

Systems with inherent parallelism often are so complex that they simply cannot be built
with the lazy programmer’s trial-and-error method. Even if the basic idea worked, special
cases can cause problems.

• nondeterminism (a large number of alternatives):

– local branching: arbitrary input and a large switch block with lots of case s

– branching in time: an event may arrive at very many different points

• dependencies between the current and future components of the system:

– the control logic for the distributed functions easily becomes scattered all around
the program code

– it is easiest to describe future extensions in an abstract model

Marko Mäkelä



T-79.231: Introduction 1-8

Parallel and distributed systems: what for?

• speeding up: it is cheaper to obtain many slow processors than a super-fast one, and

the speed of the fastest available processor may be inadequate for the application

• redundancy: the system remains operational during maintenance breaks and partial

hardware failures

• modularity: it may be easier to manage several specialised processes than a single

complex process that takes care of everything

• geographical distribution: preparing for large accidents and acts of war

Marko Mäkelä



T-79.231: Introduction 1-9

Properties of systems

• safety: “the system never reaches a bad state”; in each state holds P

– deadlock freedom

– mutual exclusion etc.

• liveness: “there is progress in the system”; X occurs infinitely often

• fairness; once X has occurred, Y will occur in n steps

– sent messages are eventually received

– each request is served

• self-stabilisation: “the system recovers from a failure in a finite number of steps”

Marko Mäkelä



T-79.231: Introduction 1-10

Methods

• Petri nets: place/transition nets and high-level nets

• Temporal logic

• MARIA and algebraic system nets

• Transition systems and process algebra

• Basics of state space reduction methods: partial order reductions and equivalences

Marko Mäkelä



T-79.231: Introduction 1-11

Applications for the methods

• communication

– verifying and testing communication protocols

– evaluating the performance (queueing times, throughput, . . . )
• safety critical embedded systems

– railroad interlocking

– aircraft and air traffic control systems
• hardware design (system on chip): locally synchronous, globally asynchronous

– processors, peripheral interfaces, memory caches and buses

– dividing tasks between programmable logic and micro-controller firmware
• all kinds of reactive systems

Marko Mäkelä



T-79.231: Introduction 1-12

Problems in software production

• How to design and implement a piece of software in such a way that

– it can be delivered in time according to the order,

– the costs remain within predetermined bounds,

– the customer obtains a solution corresponding to its expectations, and

– it is easy to extend the software?

• Software production is mostly manual work.

• Formal methods offer solutions to some of these problems.

Marko Mäkelä



T-79.231: Introduction 1-13

Software crisis

The production and maintenance costs of software grow, as the software becomes in-
creasingly more complex. The later an error is detected, the more expensive it is to
correct the error. A larger number of code lines will need to be revised—or in the worst
case—installations at customer sites must be replaced. Also fees for breaching contracts
or the loss of reputation cost.

• telephone system: switching networks crash, feature interactions, billing problems

• errors in space probes: Mariner I, Ariane 5, . . .

• errors in Pentium processors: fpdiv , f0 0f , . . .

• the maintenance of badly programmed WWW servers binds an inconceivably large
amount of resources

• other examples of errors: nntp:comp.risks

Marko Mäkelä

nntp:comp.risks


T-79.231: Introduction 1-14

Specifying systems

• A system specification captures the assumptions and requirements of the operations.

• Specifications should be unambiguous but not necessarily complete.

• Specifications describe the allowed computations (or executions).

• A specification is a contract between the customer and the software supplier.

• Usually, specifications are formal descriptions of systems.

Marko Mäkelä



T-79.231: Introduction 1-15

Advantages of formal description techniques

• correctness: automated verification that the system fulfils its requirements

• completeness: the specification forms a checking list

• consistency: inconsistent or unreasonable requirements can be detected from spec-

ifications in an early phase

• reuse: abstract specifications are highly independent of software and hardware en-

vironments, and the same solutions work in different projects (“design patterns”)

Many software description techniques, such as UML, often aren’t formal enough.

Marko Mäkelä



T-79.231: Introduction 1-16

Specification in software production

• formalising the requirements: clarifying the customer needs

• planning: partitioning the system, composition and refinement of the components

• verification: does the formal model of the system fulfil the desired properties

• validation: does the system implementation correspond to the test cases derived
from the model

• documenting the implementation

• analysis and evaluation: reverse engineering an existing system to understand and
to develop it further

Marko Mäkelä



T-79.231: Introduction 1-17

Example: reliable connection on a lossy channel

Many data communication systems are based on an unreliable connection that may dis-

tort, lose or duplicate messages. Distorted messages can be discarded by using check-

sums, and lost and duplicated messages can be detected by numbering the messages.

The basic solution, sliding window protocol, assigns sequence numbers to the messages

of transit in such a way that the recipient can detect a lost message and ask the sender

to repeat previous messages. Whenever the recipient has obtained a contiguously num-

bered sequence of messages, it can relay them to the consumer.

Sliding window protocol

Sender
Channel

Recipient

Ack.channel

Consumer
data

Producer
data

Marko Mäkelä



T-79.231: Introduction 1-18

Alternating bit protocol (1/6)
The sliding window protocol is a generalisation of the alternating bit protocol published
in 1969. In the alternating bit protocol, there are two sequence numbers for messages:
the states 0 and 1 of the alternating bit. Both the sender and the recipient have their own
copy of the alternating bit. The sender holds it in the variable s, the recipient in r .

• sender: send a message tagged with s

– if no acknowledgement tagged with s arrives in due course, repeat the message

– if the recipient acknowledges with s, toggle s: s← 1−s.

• recipient: receive a message tagged with b—the state of s at sending time—and
acknowledge it with b

– relay the message and toggle r ← 1− r , if r = b

– otherwise discard the message

Our claim is that the protocol recovers from the situation that the channel loses messages
or acknowledgements a finite number of times.

Marko Mäkelä



T-79.231: Introduction 1-19

Alternating bit protocol (2/6): C program
The “send” and “receive” primitives can be implemented with two subroutines, which in
turn use the channel primitives “send,” “receive” and “receive timeout.”

void
abp send (char c)
{

static char b;
do

send (data, b, c);
while (receive timeout (ack) != b);
b = !b;

}

char
abp receive (void )
{

static char b expect;
char b, c;
do

b = receive (data, &c),
send (ack, b);

while (b != b expect);
b expect = !b expect;
return c;

}

Marko Mäkelä



T-79.231: Introduction 1-20

Alternating bit protocol (3/6)

s=0

s=1

?kuittaus0 ?kuittaus1

?kuittaus1

?kuittaus0

!sanoma0

!sanoma1

r=0

o0 r=1

o1
!kuittaus1

!kuittaus0

?sanoma1

?sanoma0

?sanoma0 ?sanoma1

m0

m1

m
!sanoma0

!sanoma1

?sanoma0

?sanoma1

a0

a1

a
!kuittaus0

!kuittaus1

?kuittaus0

?kuittaus1

The figure depicts the operation of the sender, the recipient and the channels as labelled

transition systems, or communicating finite state automata. Transmissions and receptions

of messages are marked with exclamation points and question marks. Actions carrying

the same name are carried out simultaneously in each automaton. The channels have

capacity for at most one message at a time.

For the sake of clarity, the automata for the producer and the consumer are omitted.

Marko Mäkelä



T-79.231: Introduction 1-21

Alternating bit protocol (4/6): state space

Even though the data transmitted by the protocol may be the main concern of end users,
the data payload of the messages is irrelevant for observing the operation of the protocol.
The less memory a model contains, the easier it can be verified, because a system with
b bits of memory can assume at most 2b states.

The timers triggering retransmissions have been abstracted away. In a fully asynchronous
system, enabled timers are assumed to be able to expire at any moment. The occur-
rences of timer expirations could be restricted by modelling a clock, but it would make
verification harder.

The state of a distributed system consists of the states of its component systems, for in-
stance {s=0,s=1}×{r =0,e0, r =1,e1}×{m,m0,m1}×{a,a0,a1}. In the beginning,
each component system is in its initial state, which corresponds to the initial state to the
whole system, e.g. 〈s=0, r =0,m,a〉.

Marko Mäkelä



T-79.231: Introduction 1-22

Petri nets

Labelled transition system diagrams may be difficult to read, since the automata are

drawn as isolated entities, and the synchronisations between components are indicated

with labels. Petri nets in a sense generalise labelled transition systems by depicting the

synchronisations graphically:

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

-

-

t

t
s1 s2

s3 s4

=⇒

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

t
¡

¡µ

@
@R

@
@R

¡
¡µ

s1 s2

s3 s4

Petri nets contain places ½¼

¾»

(Stelle) and transitions (Transition) that may be con-

nected by directed arcs.

The state of a Petri system consists of local states (markings of places).

Marko Mäkelä



T-79.231: Introduction 1-23

Alternating bit protocol (5/6): Petri net

½¼

¾»
vs=0

½¼

¾»
s=1

½¼

¾»
vm

½¼

¾»
m1

½¼

¾»

m0

½¼

¾»r =0

½¼

¾»
v

r =1

½¼

¾»a1

½¼

¾»

a0

½¼

¾»
v a

?ack0

?ack0

?ack1

?ack1

!msg1

!msg0

lose
msg

lose
msg

?msg0
!ack

?msg1
!ack

?msg0
!ack0

?msg1
!ack1

lose
ack

lose
ack

6?

6?

¾ -

¾ -

?

6

$

%

$

%¾
¾

?

6

¾ © © ©ª ª ª

¢
¢
¢
¢
¢
¢
¢
¢
¢
¢
¢¢̧

A
A
A
A
A
A
A
A
A
A
AAU -

-

6

?

´
¶ ³

³
µ ´

¾ -

¾ -

¾

¾

J
J

J
J

J
J

J
J

J
Ĵ­

­
­

­
­

­
­

­
­
­Á

® ©® ©® ©

­ ª­ ª­ ª

6

?

®

­
Z

Z
Z

Z
ZZ}

½
½

½
½

½½=

XXXXXXXXXXXXXXXXXXXXy

»»»»»»»»»»»»»»»»»»»»9

PPPPPPq

³³³³³³1

³³³³³³)

PPPPPPi

-

-

¾

¾

¾

¾

½

»

¾

¼

Marko Mäkelä



T-79.231: Introduction 1-24

Token game (1/2)

• The state of a Petri system is formed by the distribution of tokens in the places.

• The state changes when enabled transitions are fired.

• A transition is enabled if each of its pre-places contains a token.

• When an enabled transition fires, a token is removed from its each pre-place and a

token is inserted to each of its post-places.

Marko Mäkelä



T-79.231: Introduction 1-25

Token game (2/2)

• The behaviour of the system can be described with event sequences. For instance,
a successful message transmission looks like this: !msg0 ?msg0 !ack0 ?ack0.

• The event sequences can be composed into a directed graph that describes all pos-
sible events in the system.

– state space: all states reachable from the initial state

– reachability graph: the nodes are states and the arcs events between states

• By playing the token game, it is “fairly” easy to ensure that the alternating bit protocol
works. There are at most 2·4·3·3 = 72 states.

Marko Mäkelä



T-79.231: Introduction 1-26

Alternating bit protocol (6/6): reachability graph

It turns out that from 〈s=0, r =0,m,a〉, there are 18 reachable states and 40 events:

a
m

r=0
s=0

a
m0
r=0
s=0

a0
m

r=1
s=0

a0
m0
r=1
s=0

a
m

r=1
s=1

a
m

r=1
s=0

a
m0
r=1
s=1

a
m0
r=1
s=0

a
m1
r=1
s=1

a0
m

r=1
s=1

a1
m

r=0
s=1

a0
m1
r=1
s=1

a1
m1
r=0
s=1

a
m

r=0
s=1

a
m1
r=0
s=0

a
m1
r=0
s=1

a1
m

r=0
s=0

a1
m0
r=0
s=0

Marko Mäkelä



T-79.231: Introduction 1-27

Many views of one system

Parallel and distributed systems can be described in very many ways:

• with labelled transition systems or process algebra,

• with Petri systems (place/transition systems or high-level systems),

• in some semi-formal description languages (such as UML) or

• in some programming language.

It makes sense to choose the presentation format according to the object being described

and to the desired accuracy. Also formal descriptions can be presented in different equiv-

alent notations: graphical, tabular, or plain text.

Marko Mäkelä


	Autumn 2003
	Teaching material
	Other reading
	Announcements
	The objective of the course
	Related courses
	Parallel and distributed systems: what are they?
	Parallel and distributed systems: designing
	Parallel and distributed systems: what for?
	Properties of systems
	Methods
	Applications for the methods
	Problems in software production
	Software crisis
	Specifying systems
	Advantages of formal description techniques
	Specification in software production
	Example: reliable connection on a lossy channel
	Alternating bit protocol (1/6)
	Alternating bit protocol (2/6): C program
	Alternating bit protocol (3/6)
	Alternating bit protocol (4/6): state space
	Petri nets
	Alternating bit protocol (5/6): Petri net
	Token game (1/2)
	Token game (2/2)
	Alternating bit protocol (6/6): reachability graph
	Many views of one system

