Examine the algorithm presented in the 5th lecture (pp. 5-21-5-22).
TicketME algorithm (informal): A shared variable holds a pair \langle next, granted \rangle of values in $\{1, \ldots, n\}$, initially $\langle 1,1\rangle$. The next component represents the next "ticket" into the critical section, while the granted component represents the last "ticket" that has been granted permission to enter the critical section. When a process enters the trying section, it "takes a ticket," that is, it copies and increments the next component modulo n. When the ticket of a process is equal to the granted component, it goes to the critical region. When process exits the critical section, it increments the granted component modulo n.

Nancy A. Lynch: Distributed Algorithms, 1996, ISBN 1-55860-348-4

Fetch the Maria description of the net from http://www.tcs.hut.fi/Studies/T-79.231/ticket.pn
Model check the following properties with Maria:

1. Two processes will never be in the critical section at the same time
2. Process 1 never gets to enter the critical section
3. Process 1 is able enter the critical section
4. Process 2 can exit the critical section

In what different ways can the properties 1 and 2 be checked? Try at least two different ways.
Examine the counterexamples that you get. Were the algorithm used as a part of a real system, would the situations that the counterexamples represent be sensible?
Use the fairness assumptions in the model (switch -DFAIR) and check the properties 3 and 4 again.

