Laboratory for Theoretical Computer Science Answers to tutorial 7
T-79.231 Parallel and Distributed Digital Systems 7th November 2003

1. First, we construct the incidence matrix of A:

-1 1 0 0 0 0 O
o 0 o0 -1 1 0 0
A o -1.1 0 0 0 -1
o o o 0 -1 1 -1
1 0 -1 0 0 0 1
o o o 1 0 -1 1

The columns represent the places in the order iy, wy, ay, 9, wo, as, p. The rows
represent the transitions in the order sq, so, b1, bo, €1, €5.

The task is to show that the places a; and as can never be marked at the
same time. If the marking of places a;, as and p is invariant, that is, M (a;) +
M (ay) + M (p) = k in all markings, then M (a;) 4+ M (as) < k in all markings.
Thus, we must show that A -+ = 0. ¢ is the vector representing the places
belonging to the place invariant.

-1 1 0 0 0 0 0 8 0
o 0 0 -1 1 0 0 1 0
o -1 1 0 0 0 -1 0| = 0
o 0 o0 0 -1 1 -1 0 0
1 0 -1 0 0 0 1 1 0
o o0 o0 1 0 -1 1 1 0

By calculating the product, we see that the result is indeed a zero vector.
Now we can calculate k in the following way: M{ -+ = k. By performing the
calculation we get

k=(1001001)-(0010011)" =1

from which follows that M(a;) + M (ag) < 1. This means that in the places
a1 and ay there can be at most one token at any marking.

In general, the place invariants can be calculated by solving the matrix equa-
tion A -y = 0. From the solution one can construct the basis for place
invariants, that is, vectors from which we can construct all possible place
invariants of the net by linear combination.

The net of this assignment gives a solution

Y1 —Ys
Y1 — Y3
hn
Y2 — Y3
Y2 — Y3
Yo
Ys

Now we can get the invariant for mutual exclusion by assigning y; = y2 = ys3
when the vector will become (0 0 y; 0 0 y; y1)7. One can get the other
solutions by assigning y, = y3 = 0 or y; = y3 = 0, when the vectors will be
(1110000)" and (00011 10)T. These three vectors form the kernel of
the incidence matrix A, and all invariants of the net can be constructed from
them with linear combination.



2. The place invariant method in itself can not be used to show mutual exclu-
sion because the algorithm uses loops. Loops are not visible in the incidence
matrix, thus they can not be modelled with invariants. Removing all loops
from the net would destroy the mutex property but the place invariants would
remain. The solution can be found from the notion of trap, which is defined
in the tutorial paper.

The mutual exclusion can be represented as an inequality M (w) + M (r) < 1.
To show that the inequality holds, we need two place invariants: M (r) +
M(r") =1 and M(w)+ M(w') = 1. It is fairly easy to see that the equations
could be invariants. We will check them anyway:

-1 1 0 0 0 0

0 0

o -1 1 -1 0 0 0 O

A 1 0 -1 1 0 0 0 O
o o o o0 -1 1 0 O

o o0 o o o0 -1 1 -1

o o0 o0 o 1 0 -1 1

The order of places is i, wait,, w,w', i,, wait,,r,r’ and the order of tran-
sitions is 8., bw, ew, s, br,er. Now A-(0 011000 0)7 = 0 and A -
(0000001 1)T = 0. Therefore the equations M(r) + M(r') and
M (w) + M (w') are invariant. Also

(10011001)-(00110000)" =1
and

(10011001)-(00000011)7 =1
from which follows M (1) + M (') =1 and M (k) + M (k') = 1.

In addition to invariants we need also the trap inequality. We guess that
P = {r',w'} could be a trap. Check: P* = {bw,br} and *P = {bw, ew, br, er}.
Now, P* C °*P, therefore P is a trap and an initialized one, too, because
My(r") = My(w') = 1. Thus, we can use the trap inequality

M(r')+ Mw') > 1.

Now we have two equations and one inequality:

M)+ M) > 1
M)+ M) = 1
M(w)+ M) = 1

By adding the equations and subtracting the inequality we get
M)+ M)+ M(w)+ M) — M) —Mu)<1+1-1

which will become
M(r)+ M(w) <1

which proves the mutual exclusion.



