
Laboratory for Theoretical Computer Science
T-79.231 Parallel and Distributed Digital Systems

Answers for tutorial 3
10th October 2003

1. Below is presented a high-level net modeling the cabbage-goat-wolf problem.
The net was made by folding the places modeling the location of passengers
and boat. The data type for all places is T = {1, 2}.

11 1

1

cabbage goat wolf

boat

g12 g21c12 c21 w12 w21 boat21

[2]

[1]

[2]

[1]

[2]

[1]

[1]

[2]

[1]

[2]

[1]

[2]

[2] [2] [2] [2][1] [1] [1]

[2]

[1]

[1]

[2]
[2] [1]

[1]

In the following picture the net has been folded further. All places modeling
the passengers have been folded together, but the place modeling the boat is
still kept separate. We denote the set of passengers by P = {cabbage, goat ,wolf }.
The data type for the place passengers can now be written as D = P × T .

The transitions 1 → 2 and 2 → 1 could be folded. The place boat could also
be folded with place passengers. Then, the arc expression on the input arc of
the folded transition would be [〈p, x〉, 〈boat, x〉]. The expression on output arc
would be [〈p, x⊕ 1〉, 〈boat, x⊕ 1〉], where x⊕ 1 = (x mod 2) + 1.

P

1

passengers

boat

1 → 2 2 → 1 boat21

[〈p, 1〉] [〈p, 2〉]

[〈p, 2〉] [〈p, 1〉]

[1] [2]

[2] [1]

[1]

[2]

The reachability graph of the net is generated in basically the same way as
with low-level nets. However, when firing the transitions, one must remember
to take in the account the bindings of transition variables. One high-level
transition can fire with different bindings from one marking.



The first three steps in generating the reachability graph are presented in
the picture. For clarity, only the first letter is used for the passengers. The
boxed markings are rejected markings, therefore the reachability graph is not
generated further from such markings.

boat:1
pass:〈c, 1〉, 〈g, 1〉, 〈w, 1〉

boat:2
pass:〈c, 1〉, 〈g, 2〉, 〈w, 1〉

boat:1
pass:〈c, 1〉, 〈g, 2〉, 〈w, 1〉

boat:2
pass:〈c, 2〉, 〈g, 2〉, 〈w, 1〉

boat:2
pass:〈c, 1〉, 〈g, 2〉, 〈w, 2〉

boat:2
pass:〈c, 2〉, 〈g, 1〉, 〈w, 1〉

boat:2
pass:〈c, 1〉, 〈g, 1〉, 〈w, 2〉

1 → 2 : [p = c]

1 → 2 : [p = w]1 → 2 : [p = g]

boat21

1 → 2 : [p = c]

1 → 2 : [p = w]

2 → 1 : [p = g]

2. The solution to the problem is presented below. The set of readers is denoted
by R = [r1, r2, . . . , rm] and the set of writers W = [w1, w2, . . . , wn]. The data
type of places idler, waitingr and reading is Dr = {r1, r2, . . . , rm}. The data
type of places idlew, waitingw and writing is Dw = {w1, w2, . . . , wn}. The data
type of the place controlling reading and writing is Dr = {r1, r2, . . . , rm}.

idlew

waitingw

writing reading

waitingr

idler

[w] [w]

[w]

[w][w]

[w]

[r] [r]

[r]

[r] [r]

[r]

RW

R

R

R

[r]

[r]



3. Below is a picture of the algebraic net modeling the Peterson’s algorithm. The
gate α is in = 0 ∨ turn = 0 and the gate β on in = 0 ∨ turn = 1.

A suitable fact transition for checking the mutual exclusion would be one
whose preplaces would be CS0 and CS1.

If a reject formula is used, a suitable formula could be

reject place cs0 equals is token_t {} &&

place cs1 equals is token_t {}

It is assumed in the formula presented above that the black token (•) is defined
in the Maria analyzer as:
typedef struct {} token_t;

[•]

[•]

[•]

[•]

[•]

[•]

[•]

[•]

[•]

[•]

[•]

[•]

[•]

[•]

[•]

[•]

NCS0

10

20

CS0

NCS1

11

21

CS1

IN0

IN1

TURN

[0]

[0]

[0]

[in]

[0]

[in]
[1]

[in]

[in]

[turn]

[turn]

[turn]

[turn]

[turn]
[1]

[turn]
[0]

[in]
[in]

[in]

[1]

[in]

[0]
α

β



4. In the following picture is presented a simplified P/T system modeling the
fueling station. The modifications suggested in part b) are also added. The
initial marking of the place “space at pump free” has been increassed from
two to four and the initial marking of the place “cashier free” from one to two.
There are two tokens in the place “pump free”, because it now models both
pumps at the station.

We can make the system finite by adding a place that restricts the number of
tokens in each place to some finite number n. The place will be a postplace
of transition “car leaves filling station” and a preplace of transition “car enters
filling station”. The place will thus restrict the firing of transition “car enters
filling station”. If we model a fueling station for a garage for n cars, we could
give the restricting place an initial marking of as many tokens as the garage
has cars.

station entranceway
car in filling

pump free
space at

at pump
unfueled car

at pump
fueled car

to leave
pump ready

car at

pump free

cashier free

exitway
car in filling station

filling station
car enters

to pump
car drives up

filled
tank is

payment

car leaves pump

is freed
pump

filling station
car leaves


