A simple client/server system

The system comprises a server and a client, which communicate via a reliable connection. The client initiates service requests (t_1) and awaits responses from the server (t_2). If there is no response within a reasonable amount of time, the client may repeat the request (t_3). Every now and then, the server may mix up things after receiving a request (t_4) and return to its initial state (t_6) without responding (t_5). The request channel is represented by the places p_s (request sent) and p'_s (no request), and the response channel is modelled by p_r.

1. Generate the reachability graph of the system.
2. In the graph, indicate those states where a conflict occurs.
3. Consider 3 variations of the system, lacking one or both of the transitions t_3 and t_6. Draw their reachability graphs. (You may draw them in the same picture using colours or other mark-up.) Indicate deadlock states. Provide a verbal explanation for each deadlock.
4. If the initial marking of p_1 is replaced with $M_0(p_1) = n$, the model represents a system with n indistinguishable clients. Transform the place/transition system into a high-level net, where the server does distinguish the clients from each other. (Hint: alter the domains of at least the places p_1, p_2, p_s, p_r and let the initial marking of p_1 be $[1, 2, 3, \ldots, n]$.)
5. Unfold the high-level net to a place/transition system in the case $n = 2$.