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‘PROBABILISTIC REASONING OVER TIME'

Outline

[1 Time and uncertainty

[1 Inference in temporal models

[1 Hidden Markov models

[1 Dynamic Bayesian networks

Based on the textbook by Stuart Russell & Peter Norvig:
Artificial Intelligence, A Modern Approach (2nd Edition)

Chapter 15; excluding Sections 15.4 and 15.6
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1. TIME AND UNCERTAINTYI

[1 We have previously developed our techniques for probabilistic
reasoning in the context of static worlds.

[1 E.g. when repairing a car, it is assumed that whatever is broken
remains broken during the process of diagnosis.

[1 However, in certain domains dynamic aspects become essential.
Example. A doctor is treating a diabetic patient.

— Recent insulin doses, food intake, blood sugar measurements, and
other physical signs serve as pieces of evidence.

— The doctor decides about food intake and insulin dose.

- /
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States and Observations.

[1 The process of change is viewed as a series of snapshots, each of
which describes the state of the world at a particular time.

[1 Each time slice involves a set of random variables indexed by t:
1. the set of unobservable state variables X; and

2. the set of observable evidence variables E;.
[1 The observation at time t is E; = & for some set of values &.
[1 The notation Xz denotes the set of variables from X5 to Xp.

[1 The interval between time slices depends on the problem!
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Stationary Processes and the Markov Assumption'

[1 In a stationary process, the changes in the world state are

governed by laws that do not themselves change over time.

[0 A first-order Markov process satisfies an equation
P(Xt | Xoit-1) = P(Xt | X¢-1)
where P(X; | Xt—1) forms the transition model of the process.

[J In addition, it is typical to assume a sensor model of the form
P(Et | XO:t; EO:t—l) = P(Et | Xt)

so that observations depend only on the current state.
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éxample. A security guard is working at some secret underground \
installation and would like to know whether it is raining today or not.

The only access to the outside world occurs each morning when the
director comes in with, or without, an umbrella.

[ The set of state variables X; = {Rain;} fort =0,1,... .
[0 The set of evidence variables E; = {Umbrélla;} fort =1,2,... .

Ri_1| P(Ry)
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/ Resulting Joint Distribution'

[ In addition to transition and sensor models, we need to specify a
prior distribution P(Xg) over the state at time 0.

~

[1 Combining this with the preceding transition and sensor models,

which are independence assumptions, implies a distribution
t
P(Xot, E1t) = P(Xo) |_|P(Xi | Xi—1)P(Ei | Xj).
j—

for any point of time t.

[1 If necessary, the Markov assumption can be recovered by
introducing suitable state variables.

Example. When modeling a battery-powered robot wandering in the
\Xy—plane, the battery level has to be taken into account. /
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‘2. INFERENCE IN TEMPORAL MODELS'

Having set up the generic temporal model, we may formulate the basic

inference tasks that are to be solved.

Filtering or monitoring: the task is to compute the belief state,

I.e. the posterior distribution P(X; | €1t) over the current state.

Prediction: the posterior distribution P(X;.k | €1.t) over the future

state is of interest for some k > 0.

Smoothing or hindsight: the aim is to compute P(X | €1)
where 0 < k <t for some past state.

Most likely explanation: is a sequence of states X1t that
maximizes P(X1+ | €1:t) for the observations e; to date.

~
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‘Filtering and prediction'

In recursive estimation, the idea is to compute P(Xt11 | €1:t41)
as a function of g1 and P(X | eri).

Using transition and sensor models we obtain by conditioning that

P(Xt11|€ntv1) = aP(eg1| Xeya,ent)P(Xea | €1t)
= aP(at1 | Xit1) Yx P(Xt41 | Xe)P(Xt | €v).

This can be viewed as the propagation of a message
f11 = P(Xt | ewt) forward: 1111 = A FORWARD(f1.1,€11).

Prediction is filtering without the addition of new evidence:

P(Xtik+1l€1t) = Yy PXeark1 | Xek) P(Xek | €1:1)-

/
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Example. The security guard has a prior belief P(Rg) = (0.5,0.5)
about the state.

1. The prediction fromt=0tot =1 gives
P(R1)) = 3 P(Ru|ro)P(ro)
= (0.7,0.3) x0.54+(0.3,0.7) x0.5 = (0.5,0.5).
2. Updating this distribution with the evidence u; for t =1 gives
P(Ri|u1)) = aP(ui|R)P(Ry) = a(0.9,0.2)(0.5,0.5)
= 0(0.45,0.1) ~ (0.818,0.182).
3. Similarly, we obtain

P(R, |up,Uup) = a/(0.565,0.075) ~ (0.883,0.117).

The probability of rain increases due to repeated evidence.
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‘Smoothing'

~

The task is to compute P(Xy | e1t) for 0 < k <t referring to past.

Using a backward message by, 1.1 = P(er1t | Xk), we obtain
P(Xk | ert) = ofykbs1t.

The backward message byx, 1t can be computed using

D1t = Z P(ex+1 | Xkr1)P(&t21t | Xk-1)P(Xk+1 | Xk)-

Xk+1

Whenever K+ 1 =1, the sequence €2t becomes empty and
P(exi2t | Xkr1) = P(T | Xki1) = 1 where T stands for truth.

This leads to a recursive definition, or algorithm

bit1:t = O BACKWARD (b 2:t, €t 111)-

/
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Example. Let us demonstrate smoothing with the umbrella example:

1. P(R1 ’ Ul,Uz) = Gf1;1b2;2 = P(R1 ’ Ul)P(Uz ’ R1) where we already
know the distribution f1.1 = P(Rl | Ul) = <O.818,0.182>.

2. The distribution by = P(Uz ’ Rl) = Zrz P(Uz | I’2)P(I’2 | Rl) =
0.9 % (0.7,0.3) +0.2 x (0.3,0.7) = (0.69,0.41).

3. By substituting these distributions and normalizing, we obtain
P(Ry | ug,u2) = (0.818,0.182)(0.69,0.41) ~ (0.883,0.117).

Thus the smoothed estimate is higher than the filtered estimate.

The additional piece of evidence Uy increases the probability of

rain on the first day, as the rain tends to persist.
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/ Finding the Most Likely Sequence' \

Example. Suppose that the security guard makes the following

observations during the first five days: U1, U, —U3, Ug, Us.

What is the weather sequence most likely to explain this?

[] For each pair of states X;11 and X, there is a recursive relationship

between the most likely paths to X 1 and X;.
[1 This is analogous to filtering, but the forward message
f11 = P(Xt | €1t) must be replaced by

M1t = Max P(Xla < 7Xt—17Xt | el:t)
X150 Xt—1

and summation over X; is replaced by maximization over X;.

[1 This gives the essential content of the Viterbi algorithm which

\ has both linear time and space requirements. /
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‘3. HIDDEN MARKOV MODELS' \

In a hidden Markov Model, or HMM, the world is described by
a single discrete random variable X; taking values 1,...,S which
correspond to the states of the world.

The transition model P(X; | X;_1) becomes an Sx Smatrix T such
that T|J = P(Xt :J | Xi_1= I)

Forward and backward reasoning are simplified as follows:
fripr = 0O aT fay
bkr1t = O TOkr1bkyot
where Oy is a diagonal matrix having P(g | X; =1i) as the i value.

For HMMs, the time and space complexities of forward-backward

type reasoning are of orders & x t and Sx t, respectively. /
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‘4. DYNAMIC BAYESIAN NETWORKS'

[ A dynamic Bayesian network (DBN) represents how the state of

the environment evolves over time.

[1 Each time slice of a DBN may have any number of state variables
Xt and evidence variables E;.

[ Every HMM can be transformed into a DBN and vice versa.

[1 By decomposing the state of a complex system into its constituent
variables, the DBN is able to take advantage of the sparseness in
the temporal probability model.

Example. The transition model of a DBN with 20 Boolean state
variables, each of which has three parents in the preceding slide, has
20 x 23 = 160 probabilities while its HMM counterpart has 24°.

N /
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/ ‘Constructing Dynamic Bayesian Networks'

[1 To construct a DBN, one must specify three distributions: P(Xg

[ For each time step t, there is one node for each state variable X;
and each evidence variable E; plus relevant links between nodes.

Example. For the security guard example, it is sufficient to specify

P(Ry) Ro | P(Ry)

N

the transition model P(Xt;1 | Xt), and the sensor model P(E; | X;).

~
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Example. A robot is described with state variables X; = (X, Y;) for
position and X; = <Xt,Yt> for velocity and Battery; for the actual
battery charge level.

Both position (evidence variables Z;) and the battery charge level
(evidence variable BMeter;) are measured.

/
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Exact Inference in DBNsI

The previous algorithms for inference in Bayesian networks can be
applied to dynamic Bayesian networks.

Given a sequence of observations, one can unroll a DBN until the
network is large enough to accommodate the observations.

Unrolling can also be done on a slice-by-slice basis.

In the general case, the complexity of reasoning is exponential.

, 02
Umbrella,
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‘SUMMARY'

[J A dynamic world can be handled using a set of random variables
to represent the state of the world at each point in time.

[1 Representations can be designed to satisfy the Markov property,
so that the future is independent of the past given the present.

[1 Combined with the stationarity assumption much simpler
probabilistic models are obtained.

[1 A temporal probability model consists of a transition model and
a sensor model.
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