A

Ch3

T-79.230 / Spring 2005 Learning from Observations

/

LEARNING FROM OBSERVATIONS I

Outline

O Forms of Learning

O Inductive Learning

U Learning Decision Trees

O Ensemble Learning

Based on the textbooky Stuart Russell & Peter Norvig:

Artificial Intelligene, Modern ApProach (2nd Edition)
pter 18; excluding Section 18.5

A

_

~

/

¢ (O 2005 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2005 Learning from Observations

/ 1. FORMS OF LEARNINGI

Performance standard

Recall the design of a learnin8 (© = Sensors

agent from Chapter 2: A

changes
Learning Performance
element element

nowledge

JusWUOIIAUT

learning
goals

Problem
generator
@gent

1. A performance element (a conventional agent) is responsible for
choosing external actions.

2. A learning element aims to improve the agent.

3. A critic evaluates the performance of the agent.

K4' A problem generator suggests new courses of action.

~

(© 2005 HUT / Laboratory for Theoretical Computer Science

A

A

T-79.230 / Spring 2005

DesigNing @ Learning EiementI

The design of the learning element if affected by four major factors:

Learning from Observations

1. Which components of the performance element are to be learned.
2. What feedback is available to learn these components.
3. What representation is used for the components.

4. The availability of prior knowledge on what is being learned.

Examples. Even newborn babies exhibit knowledge of the world.

Consider a physicist vs. art critic examining a stack of bubble chamber
photographs.

_ /

© 2005 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2005

Which Components Can Be Learned?'

O The following components of agents can be learned:

Learning from Observations

1. A direct mapping from the current state to actions.

2. A means to infer relevant properties of the world from the
percept sequence.

. Information about the way the world evolves.

3
4. Information about the possible outcomes of the agent's actions.
5. Utility information indicating the desirability of world states.

6

. Goals describing states that maximize the agent's utility.

O Various kinds of internal representations can be used for the
components: polynomials, logical rule, Bayesian networks, etc.

\ /

0 2005 HUT / Laboratory for Theoretical Computer Science

A

A

T-79.230 / Spring 2005 Learning from Observations

a N
Available Feedback.

The field of machine learning usually distinguishes three cases:

O Supervised learnin® involves learning a function from examples
of its inputs and outputs (providebly an external teacher).

O In unsupervised learnin8. the correct outputs are not known, but
one may learn patterns in the input.
Example. An unsupervised learner may learn to predict its future
percepts given its percept history so far.

O Reinforcement learning: the outputs get evaluated somehow
(for instance, the agent receives a reward or a punishment), but
the correct outputs remain unknown.

Any prior knowledge on the environment helps enormously in learning!

/

® 2005 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2005

2. INDUCTIVE LEARNINGI \

O In general, learning can be understood as a process of determining

Learning from Observations

a representation for some function f of interest.

O An example is a pair (X, f(X)) where X is the input and f(X) is the
output of the function f applied to x.

O The task of pure inductive inference (or induction) is:

Given a collection of examples of f, return a function h
(called a hypotheSis) that approximates f .

O There are often many hypotheses conforming to the examples and
it is hard to tell whether any particular h is a good approximation.

O A good hypothesis h will generalize well, i.e. predict unseen

examples correctly.

\ /

(© 2005 HUT / Laboratory for Theoretical Computer Science

A

A

T-79.230 / Spring 2005 Learning from Observations

4 N

Example. Consider a set of points (X,y) in Xy-plane such that
y = f(X). The task is to find h(x) that fits the points well.

(%) (%) f(x) f(x)

/ I/\/\A/\J I{\J\f\\ ,\/\f\f\/

(d)

O As f is unknown, there are many choices for h.

O In Figures (a)-(b), the set of polynomials (of degree at most k) is
used as the hypothesis space.

O A consistent hypothesis agrees with all examples.

_ /

© 2005 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2005 Learning from Observations

Choosing a Consistent Hypothesis'

O One principle is Ockham’s razor: prefer the simplest hypothesis

consistent with the data in order to extract a pattern from it.

[0 The (im)possibility of finding a simple, consistent hypothesis
depends strongly on the hypothesis space chosen.

Example. (Continued) Figure (c) shows another set of examples
which is difficult to capture using polynomials (61 degree is required).

O In this cas, a linear approximation is able to predict the data
better than polynomials of higher degree.

O Figure (d) shows how an exact fit is obtained with a simple
function of the form ax+b+csinx.

\ /

(© 2005 HUT / Laboratory for Theoretical Computer Science

A

A

T-79.230 / Spring 2005

Choosing the Hypothesis Space'

O A learning problem is realizable if the hypothesis space contains

Learning from Observations

the true function and unrealizable otherwise.

0 Sometimes prior knowledge can help to derive a hypothesis space
in which the true function is known to exist.

O The use of unnecessarily large hypothesis spaces (e.g. Turing
machines) is ruled out by the complexity of learning:

“There is a trade-off between expressiveness of a hypothesis
space and the computational complexity of finding simple,
consistent hypothesis within that space.”

0 Another reason to prefer simpler hypothesis spaces is that the

resulting representations may be more efficient to use.

/

© 2005 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2005

3. LEARNING DECISION TREESI

O A decision tree is a representation of a function f from an
n-dimensional attribute space to the set {Yes No}.

Learning from Observations

Thus f can be understood as a Boolean-valued function.

0 Decision trees are structured as follows:

1. Each internal node tests the value of an attribute and the
branches are labeleby the values of the attribute.

2. Leaf nodes contain the Yes/No answer for the goal predicate

the values of which are represented by the decision tree.
O Arbitrary Boolean functions can be represented as decision trees.

00 The Non-Boolean case with more than two values can be covered.

\ /

(© 2005 HUT / Laboratory for Theoretical Computer Science

A

A

T-79.230 / Spring 2005 Learning from Observations

Gxample. Consider the problem of deciding whether to wait for a \
table at a restaurant. The aim is to learn a decision tree for the goal
predicate WiIIW&it using the following attributes:

1. Alternate: is there a suitable alternative restaurant nearby?

2. Bar: is there a comfortable bar area to wait in?

3. Fri/Sat: is it Friday or Saturday?

4. Hungry: are we hungry?

5. Patrons: the number of people (None, Some, Full) in the restaurant.
6. Price: the price range of the restaurant ($, $3, $$$).

7. Raining: is it raining outside?

8. Reservation: have we made @ reservation beforehand?

9. Type: the type (French, Italian, Thai, Burger) of the restaurant.

\10. WaitEstimate: the estimate in minutes (0-10, 10-30, 30-60, >60). J

© 2005 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2005 Learning from Observations

(e

xample. Mr. Russell makes decisions for this domain as follows:

~

Patrons?

Some Full

[Yes] [waitEstimate? |

Alternate? [Hungry?] [Yes]|
No Yes No Yes
Reservation? || FriSar? | [Ves] [Alternate? |
No Yes No Yes No Yes
[Yes] [Yes] [Raining? |
No Yes
No Yes

D Price and Type attributes are considered irrelevant.

/

(© 2005 HUT / Laboratory for Theoretical Computer Science

11

12

A

A

T-79.230 / Spring 2005 Learning from Observations 13

Expressiveness of DeClision TreesI

A decision tree hypothesis for WIIIWAit is an assertion of the form
Vr (WHIWIL(r) <> P1(r) VP2(r) V...V Pu(r))
where each Pj(r) is a conjunction of tests corresponding to a path

from the root to a leaf with a positive outcome.

This makes decision trees effectively propositional and full first
order logic is not easily covered.

Any boolean function can be encoded as a decision tree, but such
a representation may require a space exponential in the number of
attribute, as for parity and majority functions.

For n Boolean attribute, there are 22" different Boolean-valued
functions. When n= 6, this number is about 1.8 x 10°.

/

© 2005 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2005 Learning from Observations 14

Inducing Decision Trees from Examples' \

An example is described by a combination of values for the
attributes and the corresponding value of the goal predicate.

The task is to form a decision tree for the predicate WilIWa&it using
a set of positive and negative examples as the trainin8 Set:

Attributes Goal
Example
Alt | Bar | Fri | Hun| Pat |Price| Rain| Res | Type Est Wit

X1 Yes| No| No| Yes| Some| $$%| No | Yes| French | 0-10 Yes
Xz Yes| No| No | Yes| Full $ No | No Thai 30-60 No
X3 No | Yes| No| No | Some $ No | No | Burger | 0-10 Yes
X4 Yes| No | Yes| Yes| Full $ No | No Thai 10-30 Yes
Xs Yes| No | Yes| No Full $$$ | No | Yes| French >60 No
Xs No | Yes| No| Yes| Some| $% | Yes| Yes| lItalian | 0-10 Yes
X7 No | Yes| No [No | None $ Yes | No | Burger | 0-10 No
Xs No| No| No| Yes| Some| $$ | Yes| Yes| Thai 0-10 Yes
Xo No | Yes| Yes| No | Full $ Yes | No | Burger >60 No
X0 Yes | Yes| Yes| Yes| Full $$5 | No | Yes| lItalian | 10-30 No
Xu No | No [No | No | None $ No | No Thai 0-10 No
X12 Yes | Yes| Yes| Yes| Full $ No | No | Burger | 30-60 Yes

(© 2005 HUT / Laboratory for Theoretical Computer Science

A

A

T-79.230 / Spring 2005 Learning from Observations

4 N

How to Construct a DecCision Tree?.

O A trivial solution encodes each example as a path leading to a leaf:
1. Along the path, all the attributes are tested in turn.
2. The leaf node holds the correct classification for the example.

0 Such a decision tree produces correct classifications for the
examples in the training set, but cannot extrapolate to others.

O By applying the Ockham’s razor principle, we should find a
“smallish™ decision tree that is consistent with examples.

O Unfortunately, it is intractable to find the smallest decision tree for
a training set, but relatively small ones can be found using a
suitable heuristics.

_ /

© 2005 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2005 Learning from Observations

4 N

[0 The basic idea is to test the most important attribute first, i.e.,
the one that best classifies examples in the training set.

Example. In the restaurant example, the attribute Patrons yields a
much better classification than the attribute Type.

1 8 |4 6 [8 12
EEHHEKME

Some

1 3 [4 |6 8 12
BEEHEED

Full

1 3 6 8 4 12
BEHE D
(@ ()

(© 2005 HUT / Laboratory for Theoretical Computer Science

15

16

A

A

KD A way to handle the last category is to use a majority vote.

-

T-79.230 / Spring 2005 Learning from Observations

/ An Algorithm for Learning Decision Trees' \

O The training set is split into smaller sets of examples that are

solved as recursive instances of the decision tree learning problem:

1. If there are both positive and negative exampls, then one of
the best attributes is chosen to split the examples.

2. If all the remaining examples are positive (or all negative), then
the answer is Yes (or No).

3. If there are no examples left, the majority classification at the
node's parent is returned as a default value.

4. If there are no attributes left, but both positive and negative
example, there is noise in the data or the set of attributes is
insufficient to fully determine the goal predicate.

© 2005 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2005 Learning from Observations

O The process can be formalized as a concrete learning algorithm:

/

~

function DECISION-TREE-L EARNING(examples, attributes, default) retur ns a decision tree
inputs: examples, set of examples
attributes, set of attributes
default, default value for the goal predicate

if examplesis empty then return default
elseif al examples have the same classification then return the classification
elseif attributes is empty then return MAJORITY-VALUE(examples)
else
best « CHOOSE-ATTRIBUTE(attributes, examples)
tree « anew decision tree with root test best
for each value v; of best do
examples; « {elements of exampleswith best = v;}
subtree « DECISION-TREE-L EARNING(examples;, attributes — best,
MAJORITY-VALUE(examples))
add a branch to tree with label v; and subtree subtree
end
return tree

(© 2005 HUT / Laboratory for Theoretical Computer Science

17

18

A

A

T-79.230 / Spring 2005 Learning from Observations

@xample. The following tree is obtained for the earlier training set: \

Patrons?

French Burger

O The resulting decision tree is much simpler than the original tree

(which was actually used for generating the training set).

O Despite simplicity, the decision tree produces a correct

classification for every example in the training set.

/

© 2005 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2005 Learning from Observations

/ Choosing Attribute Tests'

O A perfect attribute divides the set of examples into subsets in
which examples are all positive or all negative.

O One suitable measure for comparing attributes is the expected
amount of information (in the sense proposed by Shannon)
obtained by learning the exact values of attributes.

Example. Suppose you are going to bet 1€ on the flip of a coin.

1. If P(Heads) =0.99, then EMV = 0.99 x 1€ —0.01 x 1€ = 0.98€
and VPI(Heads) = 1€ —0.98€ = 0.02€.

2. If P(Heads) = 0.5, then EMV = 0.5 x 1€ — 0.5 x 1€ = 0€ and
VPI(Heads) = 1€ — 0€ = 1€,

Q:l The less you know, the more valuable the information.

~

/

(© 2005 HUT / Laboratory for Theoretical Computer Science

19

20

A

A

T-79.230 / Spring 2005

Measuring Information Content'

O Information theory uses the same intuition, but it measures

Learning from Observations

~

information content in bits rather than value of information.

O In general one bit of information is enough to answer a yes/no
question about which one has no idea.

O In general, the information content | of the actual value of V is
n
[(P(v1),...,P(wn)) = ZL_P(Vi) log, P(vj) (bits).
i=

where P(v1),...,P(Vq) are the probabilities for the possible values
Vi,...,Vq of the variable V.

Example. The information content I(3,3)=—3log, 3 —%log, % =

bits, but | (755, 155) = 0.08 bits.

© 2005 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2005 Learning from Observations

Information Gain I

O In case of decision tres, the information gain from getting to

4 N

know the exact value of a w-valued attribute A is given by

. p n .
Gain(A) = | (——, ——) — Remainder(A
A =1 o) o
where the remaining information content
\"
: Pi +N; Pi N
Remainder(A) = x| ,
A i;(p+n (pi+ni pi‘l'ni))

and p (pi) and n (n;) are the numbers of positive and negative
examples (that have the it" value of A in common).

Example. More information is gained from Patrons than from Type:

Gain(Patrons) = 1—[51(0,1) + 151(1,0) + !
Gain(Type) = 1— [([

(© 2005 HUT / Laboratory for Theoretical Computer Science

21

22

A

A

T-79.230 / Spring 2005 Learning from Observations

Assessing the Performance of
the Learning Algorithm

O A learning algorithm is good if it produces hypotheses which yield
correct classifications for as many unseen examples as possible.

O A way to evaluate the performance of a learning algorithm is to
1. Collect a large set of examples.
2. Divide it into a training Set and a separate test set.

3. Apply the learning algorithm to the examples in the training
set in order to generate a hypothesis

4. Measure the percentage of examples in the test set that are
correctly classifiedy the hypothesis h.

5. Repeat steps 1 to 4 for random training sets of increasing size.

© 2005 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2005 Learning from Observations

o

The performance of a specific learning algorithm can be depicted\
as a learning curve that gives the percentage of correct

classifications on the test set as a function of the training set size.

O To avoid peekin8 at test data, the selection of hypotheses should
not be based on a fixed test set.

Example. The learning curve below shows how the decision tree
learning algorithm performs in the restaurant example:

1

o
©

o
©

o
o

Proportion correct on test set
o o
3] ~

o
'S

o

20 40 60 80 100

Training set size

\ /

(© 2005 HUT / Laboratory for Theoretical Computer Science

23

24

A

A

T-79.230 / Spring 2005 Learning from Observations

Qvo examples have identical descriptions.

Example. Consider the problem of predicting the roll of a die using
1.
2.
3.

A consistent (and totally spurious) hypothesis is found as long as no

Noise and Overfitting' \

Recall the possibility of noise in the training set (there are two
examples with identical attribute valus, but classifications differ).

Overfitting means that a (decision tree) learning algorithm forms
a consistent hypothesis using irrelevant attributes for classification
even when relevant attributes are missing.

Day: the day on which the die was rolled,
Month: the month in which the die was rolled, and

Color: the color of the die.

/

© 2005 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2005 Learning from Observations

-

\

~

How to Avoid Overfitting?'

The information gain is close to zero for irrelevant attributes.

The relevance of attributes can also be tested using a statistical
significance test based on known distributions.
The total deviation
A)2 A\ 2
— pi—Di ni—fi)
D*Zivzl((Ipil) +('ﬁi')
Pi+ni

p+n
x? distribution with v— 1 degrees of freedom.

where fj = p x and fi; = nx % distributes according to the

Decision trees can be prunetly neglecting irrelevant attributes.

Pruning also helps to tolerate noise in the data.

/

(© 2005 HUT / Laboratory for Theoretical Computer Science

25

26

A

A

/ Broadening the Applicab”ity of Decision TreeSI

.

T-79.230 / Spring 2005 Learning from Observations

To cover a wider variety of problems, many issues must be addressed.

1. Missing data: an example X lacking the value of an attribute A is
given the majority classification among those obtained by
assuming that X has each value of A in turn.

2. Multivalued attributes: when an attribute has a large number of
possible values (e.g. RestaurantName), the information gain gives
a misleading indication on the usefulness of the attribute.
A solution is to use gain ratio instead of plain information gain.
3. Continuous-valued attributes (e.g. Price) are not well suited for
decision-tree learning, and have to be discretized somehow.

One technique is to decide split points using information gain.

(© 2005 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2005 Learning from Observations

4. ENSEMBLE LEARNING I

0 The idea of ensemble learning is to select a collection
(or ensemble) of hypotheses rather than a single hypothesis.

00 A majority vote is used to combine the predictions of an ensemble.

O If each h; in the ensemble has a small error of p, then the
probability of a misclassification becomes far more unlikely.
Example. An ensemble of five hypotheses reduces an error rate of

1 in 10 down to an error rate of less than 1 in 100.

0 The hypotheses chosen in the ensemble should be different in
order to reduce the correlation between their errors.

O Ensemble learning provides a generic way of enhancing accuracy
without increasing the complexity of the hypothesis space.

(© 2005 HUT / Laboratory for Theoretical Computer Science

\

~

/

27

28

A

A

T-79.230 / Spring 2005 Learning from Observations

_

h

A widely used ensemble method.is hoostin8 which is based on 2

; ining set where |n|t|ah .
weighted training Y wj =1 for every example j.

At each round 0 <i < M:
1. a new hypothesis h; is generated;
2. the weights of examples that are correctly/incorrectly classified

under h; are decreased/increased.

The final ensemble hypothesis is a weighted-majority combination
of the hypotheses hy,... hy.

A particular boosting algorithm (ADABOOST) has an attractive
property: if applied to a weak learnin8 2lgorithm, the resulting

hypothesis classifies the training data perfectly for large enough p.

© 2005 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2005 Learning from Observations

/Example. Consider learning decision stumps, i.e. decision trees with\

|
u

\

Proportion correct on test set

a single test at the root, in the restaurant example.

Unboosted decision stumps are not very effective for this data set.

When boosting is applied (with M =5) the performance is
increased from 81% to 93% for 100 examples.

The training set error reaches zero when M is 20.

1 1

095 095 [,(m

09
0.85 5 09

o o e 0.85 Training error

08 SV d Testerror --------
075 B os

071 [2o
065 1,/ / Boosted decision stumps 5

06 ¥ Decision stump -------- = 07
055 085

05 0.6

0 20 40 60 80 100 0 50 100 150 200
Training set size Number of hypotheses M

(© 2005 HUT / Laboratory for Theoretical Computer Science

29

30

A

T-79.230 / Spring 2005 Learning from Observations

SUMMARY

O Learning is essential for dealing with unknown environments.

[0 Learning may take several forms depending on the chosen
representation, available feedback, and prior knowledge.

O The aim of inductive learning is to learn a function from
examples of its inputs and outputs.

0 Ockham’s razor principle suggests choosing the simplest
hypothesis that matches the examples observed.

O The performance of inductive learning algorithms is measureby
their prediction accuracy as a function of the training set size.

[Ensemble methods such as boosting often perform better than
individual methods.

\

/

® 2005 HUT / Laboratory for Theoretical Computer Science

31

