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MAKING SIMPLE DECISIONS Maximum Expected Utility (MEU)I

00 The expected utility of an action A is EU(A |E) =

-~

Cutline

"’

A

O Combining Beliefs and Desires Under Uncertainty
YiP(Resultj(A) | Do(A),E) x U (Result;(A)).
0 The Basis of Utility Theor . . . .
vy y O The principle of maximum expected utility: a rational agent
O (Multiattribute) Utility Functions should choose an action that maximizes its expected utility.
O Decision Networks O The MEU principle is closely related to performance measures:
[0 The Value of Information “If an agent maximizes a utility function that correctly reflects the
o ] performance measure by which its behavior is being judged, then
O Decision-Theoretic Expert Systems . . . . .
it will achieve the highest possible performance score if averaged
Based on the textbook by Stuart Russell & Peter Norvig: over the environments in which the agent could be placed.”
Artificial Intelligene, Modern ApProach (2nd Edition) O In this lecture, we concentrate on one-shot decisions. The case
Cther 16 J \ of making sequential decisions will be considered later. J
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/ 1. COMBINING BELIEFS AND DESIRESI \ 2. THE BASIS OF UTILITY THEORYI

O A state S is a complete snapshot of the wod. O As a justification for the MEU principle, some constraints are

A
N

~

A

- . . imposed on the preferences that a rational agent may possess.
O An agent's preferences are captured by a utility function U which P P g yPp

maps a state S to a number U (S) describing the desirability of g, O In utility theory, different attainable outcomes (prizes) and

the respective probabilities (chances) are formalized as lotteries:

— A lottery L having outcomes A, A, with probabilities
P1+ ...+ Ppn=11is written as [p1,A1;-..;Pn,An)-

— A lottery [1,A] with a single outcome is abbreviated as A

O Specifying 2 utility function U for each state S may be tedious.

0 The problem can be relieved under some circumstances by
decomposing states for the purpose of utility assignment.

O A nondeterministic action A may have several outcome states

O Pref lati for lotteri tates) A and B:
Result; (A) indexed by the different outcomes of A. reference relations for lotteries (or states) A an

. . : . - A>B <= A s preferred to B,
O Prior to executing an action A the agent assigns a probability

P(Resulti(A) | Do(A),E) to each outcome A ~B <= the agent is indifferent between A and B, and

(here E summarizes the agent's evidence about the world). AZB < A>BorA~B.

/ \ /
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For any lotteries A, B, and C:
1.

o A~ D~

~

Axioms of Utility Theory'

Orderability: (A>=B)Vv (B> A)V (A~ B)

Transitivity: (A>=B)A(B>=C)= (A>C)

Continuity: A> B >C = 3p[p,A;1-p,C]~B

Substitutability: A~ B=-[p,A;1—p,C]~ [p,B;1—p,C]

Monotonicity:
A»B=(p>0q<[p,Al-p,B]Z[0,A1-0,B])

Decomposability (the “no fun in gambling” rule):

[p,A;1-p,[0,B;1—q,C]] ~ [p,A; (1~ p)g,B; (1-p)(1-q),C]

/
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The existence of a utility function is guaranteed by the axioms:
1. Utility principle: if the axioms of utility theory are obeyed,
then there is a real-valued function U such that
U(A)>U(B) < A>B and
UA)=U(B) < A~B.
2. Maximum Expected Utility principle: the utility of a lottery

U([p1.Az;- - P An]) = 5 piU(A).

However, the existence of a utility function U need not imply the
the agent is explicitly maximizing U in its own deliberations.

By observing an agent's preferences, it is possible to construct a
utility function representing What the agent is trying to achieve.

/
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3. UTILITY FUNCTIONS I

Beyond the axioms, an agent can have any preferences it likes.

Example. An agent prefers to have a prime number of euros in its
bank account (having 16€ it would give away 3€).

Preferences can also interact in complex ways.
Example. Having 2 digital TV (in contrast to a conventional one)
affects the preferences on soap operas one wishes to watch.

We are interested in systematic ways of designing utility functions
that generate the kinds of behavior we want.

/
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The Utility of Money'

Utility theory has its roots in economy where the utility measure is
money (an agent’s total net assets).

Money plays a central role in human utility functions because of its
almost universal exchangeability for all kinds of goods and services.

Typically, there is a monotonic preference for money.

Money behaves as a value function or ordinal utility function:
more money is preferred to less when considering definite amounts.

To understand monetary decision making under uncertainty we
need to analyze the agent's preferences between lotteries involving

money.
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/Example. A competitor in a TV game show is offered two prizes: \
either

A: 1000000€ for sure, or
B: after flipping a fair coin, either 3000000€ (heads) or 0€ (tails).
Is it irrational to choose the prize A?

1. The expected monetary values (EMV) of the choices are:
EMV (A) = 1 x 1000000€ = 1000000€ and
EMV (B) = 0.5 x 3000000€ + 0.5 x 0€ = 1500000€.

2. If Sk denotes the current wealth of k€, expected utilities are:
EU(A) = U (Sk+1000000) and
EU(B) = 0.5U (Sk) + 0.5U (Sk+3000000) -

|:| The choice depends on the respective utilities and k especially!

\C /
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/D Grayson [1960] found an almost perfect fit to the logarithmic form.\

O Mr. Beard's preferences (a) turned out to be consistent with

U (Skin) = (22.09 x log(n + 150000) — 263.91) $.

+U +U

+$ +$

T T
-150,000 800,000

@ (b)

0 Going into debt is usually considered disastrous.

[ Preferences between different levels of debt (b) may be analogous

K (but reverse) to those of positive wealth. /
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xample. St. Petersburg paradox [Bernoulli, 1738]: a fair coin is
tossed n times until it comes up heads and the prize is 2"€.

How much would you pay for a chance to play this game?

0 The expected monetary value for this game is

EMV = y;P(Heads;) x 2 =37, 22' = oo,
D A player shoulbe willing to pay any finite sum!

00 Bernoulli solved the paradox by setting U (Skin) = log,n:

EU = y;P(Heads;) x U (Heads|) = 35, & = 2.

00 A rational agent (with the given utility scale) shoulbe willing t0

Pay  4€ for playing the game, beCause U(Sy,4) =log,4=2.

|:| The utility of money is measured on a logarithmic scale

(at least for positive amounts).

/
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O Typically, for any lottery L, the utility of being faced with | s Jess
O A risk-averse agent prefers a sure thing with a payoff that is less

[0 A desperately debted agent may behave in a risk-seeking& Way.

O A certainty equivalent of a lottery L is the sum that an agent is

O An insurance is based on a positive insurance premium, i.e., the

~

Insurance Premium.

than the utility of being handed EMV/(L) for sure.
than the expected monetary value of a gamble.

ready to accept as a substitute for participatin8 L.

Example. The certainty equivalent is 400€ for a lottery L that
gives 1000€ half the time and O€ otherwise (EMV (L) = 500€).

difference between EMV (L) and the certainty equivalent for L.
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0 The axioms of utility do not specify a unique utility function.

Example. For instance, two agents based on U(S) and
U’(S) = ki +kz x U(S) with ky > O behave identically.

O A way to assess utilities is to establish a scale with a “best
possible prize’ Umax and a “worst possible catastroph€’ Umin.

0 Normalized utilities use a scale with Umin = 0 and Umax = 1.

O An intermediate utility U(S) = p is determined by indifference
between S and a standard lottery L = [P, Umax; (1 — P), Umin]-

0 Trade-offs in decision making let us assess the value of human life.

Examples. Micromort (1/1000000 chance of death) and QALY

Utility Scales and Assessment' \

Quality—adjusted life year) are measures for the value of human life. J
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4. MULTIATTRIBUTE UTILITY FUNCTIONSI

0 Multiattribute utility theory deals with utility functions
U (X1,...,Xn) that depend on several attributes X,...,Xp.

Making simple decisions

O Each attribute X; ranges over discrete/continuous scalar values.

O For simplicity, it is assumed that (all other things being equal)
greater values of an attribute X; correspond to higher utilities.

O We would like to identify regularities in the preference behavior as
representation theorems for the corresponding utility functions:

U(X1,...,Xn) = F[f1(X1),..., fn(Xn)]

where f is a simple function such as addition.

\ /
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/ Dominance. \

O There is strict dominance of an option S1 over other option S;
if S1 is better than Sy with respect to all attributes.

Example. An airport site S costs less, generates less noise
pollution, and is safer than another site So.

O Uncertain attribute values can be handled analogously.

[0 Strict dominance is useful in narrowing down the choices.

Xz

This region
dominates A
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Stochastic Dominance'

Example. The costs of siting the airport at §; and S, are 3.7 x 10%€
and 4.0 x 10°€ with standard deviations 0.4 x 10°€ and 0.35 x 10%€.

T-79.230 / Spring 2005

Probability
o
>

6 65 -5 45 -4 -35 -3 -25 -2
Negative cost

O Knowing that the cost of S, is exactly 3.7 x 10%€ does not enable
decision making, beCause S, coulle cheaper.

O But S; stochastically dominates Sp —> S, can be discarded.
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[0 Stochastic dominance is best detected from the respective

~

cumulative probability distributions for the costs of 5, and S,:

1

08

0.6

04

Probability

02

o
6 55 -5 -45 -4 -35 -3 -25 -2
Negative cost

If actions A; and A lead to probability distributions p1(x) and
p2(X) on attribute X, then A; stochastically dominates Az on X if

and only if for all x, ffoo p1(y)dy < ffm p2(y)dy.

In many cases, stochastic dominance is easily detected. E.g.,

construction costs depend on the distance to the city center.
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Preferences without Uncertainty'

Attributes X; and X are preferentially independent of a third
attribute X3 if the preference between outcomes (X1,xX2,X3) and
(X],X5,X3) is independent of the particular value x3 of Xs.

Mutual preferential independence (MPI) of Xy,...,Xy:
each pair of variables is preferentially independent from others.

If attributes X1,...,Xn are mutually preferentially independent,
then the agent's behavior can be described as maximizin&

V(S) = 3L Vi(Xi(8))
where each V; is a value function referring only to X;.

A value function like V (S) is called an additive value function.

/
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Preferences with Uncertainty'

Utility independence extends preferential independence to cover
lotteries: a set of attributes X is utility-independent of Y if
lotteries involving X are independent of the particular values of Y.

A set of attributes X is mutually utility-independent (MUI) if
each subset Y C X is utility-independent of X —Y.

If MUI holds, the agent’s behavior can be described in terms of a
multiplicative utility function. For three attributes, U; =

kqiU1 + koU> + k3U3 + k1 koU1U2 + kokzUoU3 + ki kzU1U3 + ki koksU1UoU3
where U; denotes U;(X;(S)) for i € {1,2,3}.

In general, an n-attribute problem exhibitin8 MUI can be modeled

using n single-attribute utilities and n constants. J
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5. DECISION NETWORKS I

Decision networks (or influence diagrams) extend Bayesian
networks with additional nodes for actions and utilities:

1. Chance nodes (ovals) represent random variables with CPTs.

2. Decision nodes (rectangles) represent points where the
decision-maker has a choice of actions to perform.

3. Utility nodes (diamonds) represent the agent's utility function
(2 tabulation of the agent’s utility as a function of attributes).

Chance nodes (as well as utility nodes) may have both chance
nodes and decision nodes as parents.

We concentrate on decision networks with a single decision node.

/
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4 N

Example. Consider the airPort siting problem. In addition to the
choice being made, factors including s rratric Litigation, and

Construction affect utility indirectly via Deaths, Noise, and Cost.

Airport Site

© 2005 HUT / Laboratory for Theoretical Computer Science
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A way to simplify a decision network is to represent the expected

utility of actions using action-utility tables.

Example. The decision network for the airport siting problem can be
simplified by factoring out chance nodes describing outcome states:

Airport Site

|:| Less flexible to update!

/
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Evaluating Decisio" I‘\iGtworksI

The algorithm for evaluating a decision network in the followin8:

Making simple decisions

1. Set the evidence variables for the current state.

2. For each possible value of the decision node:
(a) Set the decision node to that value (like any evidence variable).

(b) Calculate the posterior probabilities for the parent nodes of the
utility node using standard probabilistic inference algorithms.

(c) Calculate the resulting utility for the action.
3. Return the action with the highest utility.

O We will later consider the possibility of executing several actions in
sequence which makes the problem much more interesting.

\_ /
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6. THE VALUE OF INFORMATION.

[0 One of the most important parts of decision making is knowin8
what questions to ask to obtain all relevant information.

Making simple decisions

Example. A doctor cannot expect to be provided with the results
of all possible diagnostic tests when meeting @ patient.

0 The value of information is the difference between the expected
utilities of the best actions before and after obtaining information.

[ The acquisition of information is achieved by sensing actions.

O Information value theory is a form of sequential decision making.

\ /
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4 N

Example. An oil company is willing to buy one of n indistinguishable
blocks of ocean drilling rights. The setting is as follows:

1. There are n plocks for sale.
2. Exactly one block contains oil worth CE€.
3. The price of a single block is %€.
A seismologist offers the company the results of a survey of block 3.
0O How much is the company willing to pay for knowing the results?

0 The expected value of this piece of information is
C. n-1,¢C c, C

1
nC T Go e Ee

O The information is is worth as much as the block itself!

\_ /
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A General Formula.

O It is expected that the exact value of some random variable Ej is

Making simple decisions

~

obtained: hence the term value of perfect information (VPI).

O The utility EU(a|E) of the current best action o is defined by
mEXXU(Resulti (A))P(Resultj(A) | E,Do(A)).
|

O Given a piece of evidence E; this be€©MeS EU(ag, | E,Ej) =

max ZU (Resultj(A))P(Resultj(A) | E,Do(A),E;).

O But the value of Ej is currently unknown, and we have to average
over all possible values ejx of Ej. Thus VPIg(E;j) =

(3 P(E) = ej| EJEU (e | E.E) = &) —EU(@| E)

/
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/Example. Consider different routes through a mountain range.

(2) A straight highway through a low pass (action Aj) is clearly
preferable to a winding dirt road over the top (action Az)

(b) The choice between two different winding dirt roads of slightly
different lengths — each of which may be blocked or not.

(c) The differences are likely to be small in summertime.

P(UIE;) P(UIE;) P(UIE;)
r r u %U u
2 U, Uz Uy U, Uy
@ (b) ©

Additional information becomes valuable in the case (b).

U J
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|:| “Information has value to the extent that it is likely to \
cause a change of plan, and to the extent that the new plan
will be significantly better than the old plan".

Properties of the Value of Informatio"'

The value of perfect information shares the following properties:

1. Nonnegativeness: VPIg(Ej) > 0.

2. Nonadditivity (VPl depends on the evidence E obtained so far):
VPIg(Ej,Ex) # VPIE(E;) + VPl (Ey).

3. Order-independence:

VPIg(Ej,Ex) = VPIg(Ej) + VPIg g (Ex)

= VP|E(Ek) +VP|E7EK(EJ').

.
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Implementing an Information-Gathering Agent'

O For now, it is assumed that with each observable evidence variable

4 N

Ej, there is an associated cost Cost(E;) of obtaining E; via tests.

O An information gathering agent should request the most valuable
piece of information Ej compared to Cost(E;):

function INFORMATION-GATHERING-AGENT( percept) returns an action
static: D, adecision network

integrate perceptinto D
j « the value that maximizes VPI () — Cost(E;)
if VPI(E)) > Cost(E;)
then return REQUEST(E;)
elsereturn the best action from D

O The procedure implements myopic information gathering, since

VPl is short-sightedly applied to single pieces of evidence.

/
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DECISION-THEORETIC EXPERT SYSTEMSI

The knowledge engineering process for a decision-theoretic system:

4 N

1. Determine the scope of the problem (decide nodes).

2. Lay out the topology of the network (analyze dependencies).
3. Assign probabilities to chance nodes.

4. Assign utilities to utility nodes.

Enter available evidence to the network.

Evaluate posterior probabilities and utilities for the nodes.

Gather new evidence using value of information as a criterion.

© N o O

Perform sensitivity analysis for the assigned probabilities/ utilities.

/

\
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SUMMARY

Decision theory = probability theory + utility theory.

A rational agent considers all possible actions and chooses the
one that leads to the best expected outcome.

Decision networks — a generalization of Bayesian networks —

provide a simple formalism for expressing and solving decision
problems.

The value of information is defined as the expected improvement
in utility compared to making @ decision without the information.

Expert systems that incorporate utility information have
additional capabilities compared to pure inference systems.

/
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Recall the domain of soccer playing 2gents and formalize a ball
tracking system using @

QUESTIONSI \

ayesian network with the following variables:

Variable | Values Explanation
Tired | True, False Is the agent feeling tired?
Angle | Left, Center,Right | Angle with respect to the ball
Distance | Far,Close, Touch | Distance to the ball

For each variable X of these, introduce an additional variable Xpext
referring to the outcome of actions available to the agent:

TurnLeft, TurnRight, Run and Nop.

Add a utility node that depends on Tirednex, Angle, e, and
Distancepet. Define a utility function based on these attributes. /
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