Kevät 2005

T-79.230 Agenttipohjaisen tietojenkäsittelyn perusteet Laskuharjoitus 5 Solutions

1.	a)	The	costs	of	${\rm the}$	tree	routes	are	as	follows:
----	----	-----	------------------------	----	-------------	-----------------------	--------	-----	----	----------

Route	Time (min)	Cost (mk)
Ι	57	39
II	33	26
III	55	20

If the engineer salary a = 40 mk, the cost function U(t, m) = m + at gives us the following values:

$$I: U(57, 39) = 39 + \frac{57}{60} \cdot 40 = 77$$
$$II: U(33, 26) = 26 + \frac{33}{60} \cdot 40 = 48$$
$$III: U(55, 20) = 20 + \frac{55}{60} \cdot 40 = 56.7$$

With given parameters the route II is the best.

We find the point where III is better than II by solving the following inequality:

$$\frac{33}{60}x + 26 \ge \frac{55}{60}x + 20$$
$$x \le 16.36.$$

so the engineer had to earn less than 16.36 mk/h for route III to be better.

The figure below gives the costs of different routes when a varies between 0–100.

We see that I is dominated by the two other routes so it can be left out of decision process.

b) When we use the cost function $U(t_1, t_2, m) = a_1t_1 + a_2t_2 + m$, where $a_1 = 1.5a$ and $a_2 = 0.5a$ the situation is as follows: Bout d_1 Time t_2 (min) d_1 Time t_3 (min) d_4 Cost (mk)

Route	Time t_1 (min)	Time t_2 (min)	Cost (mk)
Ι	25	32	39
II	12	21	26
III	45	10	20

Thus, the costs of the routes are:

$$I: U(25, 32, 39) = 39 + \frac{25}{60} \cdot 60 + \frac{32}{60} \cdot 20 = 74.7$$
$$II: U(12, 21, 26) = 26 + \frac{12}{60} \cdot 60 + \frac{21}{60} \cdot 20 = 45$$
$$III: U(45, 10, 20) = 20 + \frac{45}{60} \cdot 60 + \frac{10}{60} \cdot 20 = 74.375$$

Again, *II* was better than the others. The following figure shows how the costs change as function of salary:

In this interval none of the options dominates the other ones.

c) If the results of choices are not deterministic, we use the expected value E[U(X)] of the utility function as basis for the decisions. The probability distribution of the three different routes is:

Route	$t \pmod{t}$	p(t)
Ι	57	0.75
	58	0.20
	62	0.05
II	33	0.30
	34	0.20
	43	0.20
	48	0.30
III	55	0.16
	56	0.19
	57	0.03
	60	0.17
	61	0.04
	65	0.17
	66	0.03
	70	0.17
	71	0.03
	75	0.01

 $\begin{vmatrix} 75 \\ 75 \end{vmatrix} 0.01$ This gives us the following expected values and costs:

Reitti	E(t) (min)	U(t,m) (mk)
Ι	57.45	77.3
II	39.7	52.47
III	61.6	61.06

Again, we should choose route II.

