Kevät 2005

T-79.230 Agenttipohjaisen tietojenkäsittelyn perusteet Laskuharjoitus 4 Solutions

1. A Fire station has one fire truck. When an emergency call comes, the truck goes out, fights fire and then returns.

We use shorthands p and q for the transition probabilities of the HMM illustrated in the figure.

(a) First, we need to figure out values for p and q.

For each one-hour time slice, the probability that the truck returns is p and the probability that is does not return is 1 - p. Thus the expected time that the truck is away is

$$\sum_{i=0}^{\infty} (i+1) \cdot p \cdot (1-p)^i = [\sum_{i=0}^{\infty} (1-p)^i]^2 = \frac{p}{(1-(1-p))^2} = \frac{1}{p}$$

hours. By equating this with three hours, we obtain $p = \frac{1}{3}$. On the other hand, we assign $q = \frac{1}{12}$, as there is an emegency call once in twelwe hours on the average.

- (b) $\mathbf{P}(Parked_{t+1} \mid Parked_t) = \langle \frac{11}{12}, \frac{1}{12} \rangle$ and $\mathbf{P}(Parked_{t+1} \mid \neg Parked_t) = \langle \frac{1}{3}, \frac{2}{3} \rangle$.
- (c) Suppose that $\mathbf{P}(Parked_t) = \langle r, 1-r \rangle$ where r is introduced as a parameter probability. Using the transition model, we obtain

$$\mathbf{P}(Parked_{t+1}) = r \cdot \langle 1 - q, q \rangle + (1 - r) \cdot \langle p, 1 - p \rangle \\ = \langle r \cdot (1 - q) + (1 - r) \cdot p, qr + (1 - r) \cdot (1 - p) \rangle \\ = \langle r \cdot (1 - p - q) + p, (1 - r) \cdot (1 - p - q) + q \rangle.$$

In the long run, we have $\mathbf{P}(Parked_t) = \mathbf{P}(Parked_{t+1})$ from which we obtain $r = r \cdot (1 - p - q) + p$. It follows that $r \cdot (1 - 1 + p + q) = p$ and $r = \frac{p}{p+q}$. By substituting the known values for p and q, we obtain

$$r = \frac{\frac{1}{3}}{\frac{1}{3} + \frac{1}{12}} = \frac{4}{4+1} = \frac{4}{5}.$$

Thus the truck spends on the average $24 \cdot \frac{4}{5}$ hours (i.e. 19 hours and 12 minutes) per day at the fire station in the long run.

(d) Our task is to derive an exact expression distribution $\mathbf{P}(Parked_t)$ when $\mathbf{P}(Parked_0) = \langle k, 1 - k \rangle$. We may utilize the general transition probabilities from (c) and conclude the following probabilities:

The case of $P(\neg Parked_t)$ can be handled by analogy and symmetry. By exchanging the roles of p and q as well as k and k-1, we obtain

$$P(\neg Parked_t) = (1-k) \cdot (1-p-q)^t + q \cdot \sum_{i=0}^{t-1} (1-p-q)^i.$$

Then we conclude that $\mathbf{P}(Parked_t) = \langle P(Parked_t), P(\neg Parked_t) \rangle$.

(e) First, it is easy to see from the expressions above that whenever |1 - p - q| < 1 or (i.e. 0) it holds that

$$\lim_{t \to \infty} \mathbf{P}(Parked_t) = \langle p \cdot \frac{1}{1 - (1 - p - q)}, q \cdot \frac{1}{1 - (1 - p - q)} \rangle$$
$$= \langle \frac{p}{p + q}, \frac{q}{p + q} \rangle$$
$$= \langle r, 1 - r \rangle$$

for the probability r derived in (c). In particular, if 1 - p - q = 0, or equivalently p + q = 1, then we have $\lim_{t\to\infty} \mathbf{P}(Parked_t) = \langle p, q \rangle$. Second, if 1 - p - q = 1, then p = q = 0 and

$$\lim_{t \to \infty} \mathbf{P}(Parked_t) = \langle k, \, k-1 \rangle.$$

Third, if 1 - p - q = -1, then p + q = 2, p = q = 1, and we obtain $\mathbf{P}(Parked_t) = \langle k, 1-k \rangle$ for even values of t and $\mathbf{P}(Parked_t) = \langle 1-k, k \rangle$ for odd values of t. Thus $\mathbf{P}(Parked_t)$ converges only if $k = 1 - k = \frac{1}{2}$ and $\lim_{t\to\infty} \mathbf{P}(Parked_t) = \langle \frac{1}{2}, \frac{1}{2} \rangle$.