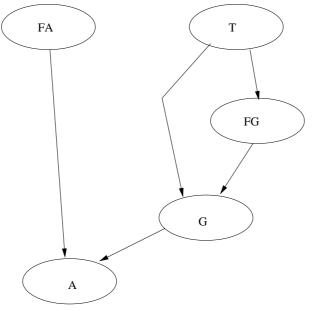
Kevät 2005


T-79.230 Agenttipohjaisen tietojenkäsittelyn perusteet Laskuharjoitus 3 Solutions

1. (a) We start by abstracting the temperatures so that there are only two possible values, safe and dangerous.

We use the following nodes in the network:

- F_A Is the alarm faulty?
- T Is the temperature too high?
- F_G Is the temperature gauge faulty?
- G Does the gauge show dangerous temperature?
- A The alarm rings.

Using the dependencies given in the exercise text, we get the following Bayesian network:

- (b) The network is not a polytree, since there are two different routes from node T to node G.
- (c) We attach the following probability tables to nodes of the network:

T	F_G	P(G)
T	T	y
T	F	x
F	T	1-y
F	F	1-x

	G	F_A	P(A)
	T	T	0
(d)	T	F	1
	F	T	0
	F	F	0

(e) When we compute probabilities from effects to causes, we try to establish how different predecessors contribute to the probability table of a node.

$$P(T \mid \neg F_A \land \neg F_G \land A) = P(T \mid G \land \neg F_G)$$

$$= \frac{P(G \land \neg F_G \mid T)P(T)}{P(G \land \neg F_G)}$$

$$= \frac{P(G \mid \neg F_G \land T)P(\neg F_G \mid T)P(T)}{P(G \land \neg F_G \mid T)P(T) + P(G \land \neg F_G \mid \neg T)P(\neg T)}$$

$$= \frac{P(G \mid \neg F_G \land T)P(\neg F_G \mid T)P(T) + P(G \mid \neg F_G \land \neg T)P(\neg F_G \mid \neg T)P(\neg T)}{P(G \mid \neg F_G \land T)P(\neg F_G \mid T)P(T) + P(G \mid \neg F_G \land \neg T)P(\neg F_G \mid \neg T)P(\neg T)}$$