Kevät 2005

T-79.230 Agenttipohjaisen tietojenkäsittelyn perusteet Laskuharjoitus 8 Tehtävät

1. Apply the CURRENT-BEST-LEARNING algorithm to the set of examples given in the restaurant example:

Example	Attributes										Goal
Example	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	WillWait
X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	Yes
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	No
X_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	Yes
X_4	Yes	No	Yes	Yes	Full	\$	No	No	Thai	10-30	Yes
X_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
X_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	Yes
X_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	No
X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	Yes
X_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
X_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	No
X_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	No
X_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	Yes

Use the following first hypotheses:

- a $\forall x (WillWait(x) \leftrightarrow Hungry(x))$
- b $\forall x (WillWait(x) \leftrightarrow WaitEstimate(x, 30-60))$
- 2. Our favorite *Surprise* candy comes in two flavors, cherry and lime, but they are wrapped in an indistinguishable way. The candy is sold in large (indistinguishable) bags containing various mixtures of the two flavors:
 - a 100% cherry
 - b~75% cherry and 25% lime
 - c 50% cherry and 50% lime
 - d~25% cherry and 75% lime
 - e100% lime

Suppose that we open a new bag of candy and unwrap 4 pieces out of which three turn out to be cherry-flavored. The mixtures above can be interpreted as hypotheses h_1-h_5 about the contents of the bag.

- (a) Which one is the most likely (ML) hypothesis?
- (b) Suppose that the prior distribution of the bags is (0.1, 0.1, 0.1, 0.6, 0.1). Find out the maximum a posteriori (MAP) hypothesis.
- (c) Estimate the probability that the fifth piece of candy is lime-flavored.