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ACTING UNDER UNCERTAINTYI

Agents almost never have access to the whole truth about their
environment and have thus act under uncertainty.

Qualification problem: how to define the circumstances under
which a given action is guaranteed to work.

It is typical that there are too many conditions

(or exceptions to conditions) to be explicitly enumerated.

The right thing to do, the rational decision, depends both on the
relative importance of the various goals and the likelihood that,
and degree to which, they will be achieved.

/
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Example. Suppose that our taxi-driving 2gent wants to drive someone
to an airport 15 miles away to catch a flight.

O Plan Agg involves leaving 90 minutes before the flight.

O Plan Ago is successful given that
1. the car does not break or run out of gas,
2. the agent does not get into an accident,

3. the plane does not leaVve early, and soon ...

O Performance measure:,getting to the airp.ort on time, avoiding
unproductive, long Waits as well as speeding tickets.

O Other plans, such as Aj2, increases the likelihood of getting to
the airport on time, but also the likelihood of a long wait.

\_ /
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/ Handling Uncertain Knowledgel \

Example. Consider formalizing some diagnostic principles:

Vp(Symptom(p, Toothache) — Disease( p, Cavity))
Vp(Symptom(p, Toothache) — Disease( p, Cavity)
Vv Disease( p, | mpactedwWisdom)
V Disease(p, GumDisease) V - - )

Vp(Disease(p,Cavity) A - - - — Symptom( p, Toothache))

Difficulties with formalizations using sentences of first-order logic:
1. Laziness: completing antecedents/consequents is very laborious.

2. Theoreticalighorance: the domain lacks a comprehensive theory.

3. Practicalignorance: applicability to a patient is not guaranteed.

/
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O Agent's knowledge on the €nvironment can at best provide
only a degree of belief in relevant sentences.

O Probability theory assigns a degree of belief P(¢)
(a real number from the interval [0,1]) to a sentence @.

O Individual sentences @ are considered to be either true or false.
— P(¢) = 0 means that @is false in all circumstances
— P(@) = 1 means that @ s true in all circumstances.

O Probabilities provide a way of summarizing the uncertainty.

Example. A patient has a cavity with a probability of 0.8 if (s)he has
a toothache. The remaining probability mass (0.2) summarizes all
other explanations for toothache.

\_ /
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Probability Theory vs. Fuzzy Logic'

O Degrees of belief (as in Probability theory) are different from
degrees of truth (as in fuzzy logic).

Example. Consider an atomic sentence A stating "the door is closed”.

~ P(A) = 0.99 means that the door is closed almost for sure.

— In contrast to this, a degree of truth V(A) = 0.99 would mean that
the door is almost completely closed.

\ /
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On The Role of Evidence'

O The probability that an agent assigns to a sentence @ depends of
the percepts @1,...,@, (evidence) obtained so far.

00 Analogous to logical consequence {@1,...,0n} =@

O Prior/unconditional probability P(@) is the probability of @ without
evidence.

O Posterior/conditional probability P(@| @ A--- A @) is the
probability of ¢ after obtaining Pieces of evidence @1,...,¢n.

\_ /
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Example. Consider a shuffled standard pack of 52 playing cards.
Let A mean “the card drawn from the pack is the ace of spadesn-
— Prior probabilities before looking the card:
P(A) = & and P(-A) = 2.
— Posterior probabilities after looking the card:

P(AAA) _ P(A)

PAIA = "pm ~Pm)

=1 and

PAA-A) 0

P-A)  P(-A) 0

P(A| —A) =

Note: all pieces of evidence have to be taken into account when the
posterior probabilities of sentences are determined.

/
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Uncertainty and Rational Decisions'

Example. Regarding the airport example, suppose that
L P(“Plan Agp succeeds.”) = 0.95,
2. P(“Plan Ajpp succeeds.”) = 0.98, and
3. P(“Plan Ajaao succeeds.”) = 0.9999.
— Which plan should be selected for execution?

— What kind of criteria could be used for making such a decision?

In addition to estimating the success rates of plans/actions, we

GVe to specify preferences on the possible outcomes.

/
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O By utility theory every state has a degree of usefulness, or utility,
to an agent and the 2gent prefers states with higher utility.

O An agent may freely define its preferences that may appear even
irrational from the point of view of other agents.

O Utility theory allows for altruism (unselfishness).

0 Decision theory = probability theory + utility theory

The principle of Maximum Expected Utility (MEU):

“an agent is rational if and only if it chooses an action
that yields the highest expected utility, averaged over all the
possible outcomes of the action’.

\ /
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Design for a Decision-theoretic Agent'

5 deCision-theoretic agent that selects

ract. algarit mffglrlowmg'

ratlona]: actions is the

function DT-AGENT( percept) returns an action
static: a set probabilistic beliefs about the state of the world

calculate updated probabilities for current state based on

available evidenceincluding current percept and previous action
calculate outcome probabilities for actions,

given action descriptions and probabilities of current states
select action with highest expected utility

given probabilities of outcomesand utility information
return action

The steps of the algorithm will be refined in the sequel.

/
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BASIC PROBABILITY NOTATIONI

A formal language is used for representing and reasoning with

uncertain knowledge.
An extension of the language of propositional logic is used:

1. Atomic propositions of the form X = X involve a random
variable X and a value X from its domain.

2. Propositional connectives -, A, V, —, and < can be used to
form more complex propositions.

Degrees of belief are expressed as probabilities P(¢) that are
assigned to propositions (or sentences) @ of the language.

The dependence on evidence/experience @,...,@, is expressed in
terms of conditional probability statements P(®| @1,...,@). /
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/ Random Variables.

0 Random variaHes are typically divided into three kinds:

Uncertainty

~

1. Boolean random variables having the domain (true, false).

Notational abbreviations: Cavity=true ~» cavity

Cavity=false ~-» -—cavity
2. Discrete random variables take on values from a finite or at
most countable domain (X1,X2,...).

3. Continuous random variables range over real numbers.
O We will mostly concentrate on the discrete case.
0 Atomic propositions can be viewed as Boolean random variables.

O An expression X =X (which denotes that the random variade X

K has the value ;) is interpreted as an atomic proposition.

/
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Example. Consider a random variade Weather that ranges over
weather conditions sunny, rain, cloudy, and snow.

~

Then we may assign probabilities to particular values of Weather:

P(Weather = sunny) = 0.7
P(Weather = rain) = 0.2
P(Weather = cloudy) = 0.08
P(Weather = snow) = 0.02

O A probabilityistribution
combinations of the random variables involved.

P assigns probabilities to all value

Example. In the example above, P(Weather) = (0.7,0.2,0.08,0.02).
The probability distribution P(Weather, Cavity) is two-dimensional.

\ /
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Prior/Unconditional Probabilities

O Unconditional probabilities are applied when no other information
(evidence) is available.

Example. Let Cavity be a Boolean random variable meaning that “a
patient has a cavity”. Then the prior probability

P(Cavity = true) = 0.1, or P(cavity) = 0.1 for short,

means that in the absence of any other information the patient has a
cavity with a probability of 0.1.

This probability may change if new information becomes available.

Example. A prior probabilityistribution for the random variale

Weather is easily defined by setting P(Weather) = (0.7,0.2,0.08,0.02).

\_ /
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Posterior/Conditional Probabilities I

O If new evidence is acquired, conditional probabilities have to be

~

used instead of unconditional ones.

0 Conditional probabilities can be defined in terms of unconditional
ones. When P()) > O we have that
PleAY)
P =
@1V ==y,

Example. Suppose that Cavity and Toothache mean that “the patient
has a cavity” and “the patient has a toothache”, respectively.

The prior probability P(cavity) = 0.1 has to be replaced by a

conditional one P(cavity | toothache) = 0.8 in case of a toothache.

(© 2004 HUT / Laboratory for Theoretical Computer Science

15

16



T-79.230 / Spring 2004 Uncertainty

~

Note: the conditional probability P(cavity | toothache) = 0.8 does
not mean that P(cavity) = 0.8 when Toothache is true!

The preceding definition can be rewritten as product rule:

P(eAW) = P(@| Y)P(P), or alternatively
P(AW) = P(W [ 9)P(@).
Conditional probabilities and the product rule can be generalized
for probability distributions of random varialeS as follows:
P(XAY)
P(Y)

These have to be interpreted with respect to particular values of

P(X|Y) = and P(XAY) =P(X | Y)P(Y).

the random variableS X and Y involved. For instance,

PX=x1AY =y2) =P(X=x1|Y =Yy2)P(Y =y2).

/
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Where Do Probabilities Come From?.

Frequentist view: probabilities come from experiments.
If 10 out of 100 people have a cavity, then P(cavity) = 0.10.

Objectivist view: probabilities are real aspects of the universe that
are approximated by the probabilities obtained with experiments.

Subjectivist view: an analyst tries to estimate probabilities.

Reference class problem: the more evidence is taken into
account, the Smaler becomes the reference class from which
colect experimental data. This setting suggests the following:

1. Minimizing the number of probabilities that need assessment.

2. Maximizing the number of cases availale for each assessment.

/
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\ / THE AXIOMS OF PROBABILITYI

[0 Probabilities associated with sentences are axiomatized as follows:
For all@and Y: Al. O0<P(p) <1,
A2. P(@) =0if @is unsatisfiabe,
A3. P(p)=1if @is valid, and
A4 P(ev ) = P(@)+P() —P(eny).

O The last axiom is easily verified from a Venn diagram:

(© 2004 HUT / Laboratory for Theoretical Computer Science
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Lemma. If @ and U are logically equivalent, then P(@) = P(y).

Proof. Suppose that @ and U are logically equivalent, i.e., =@« .
1. EYV Y and E@V-u.

2. Both YA - and @A = are unsatisfiale.

3. Using A4 we obtain

PGV -) = P(W) +P(-W) = P(WA-W)
= P(-y) =1—P(y) and

P(eV —W) = P(@) + P(=) — P(pA ~)
= 1=P(@9)+1-P(yp)-0
= P(@) =P(y).

\ /
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/ Why the Axioms of Probability Are Reasonable? I\

O Bruno de Finetti, 1931:

“If Agent 1 expresses a set of degrees of belief that

violate the axioms of probability theory then there is @
betting strategy for Agent 2 that guarantees that Agent 1

will lose money.”

Example. Consider the following betting scenario:

T-79.230 / Spring 2004 Uncertainty 21
O Other propositional connectives are covered as follows:
1. P(@AW) =P(g) +P(¥) —P(eV ) (A4)
2. P(—@) =1—P(0)
3. P(@— W) = P(=@V ) = P(=pV (pAY)) (Lemma)
= P(=@) +P(@AY) — P(=@A QA Y) (A4)
= 1-P(@+P(eAW) -0
= 1-P(®)+PW|9P(9) (Def. of P(W| @)
4. P(@— ) = P((-@VY)A (- V) (Lemma)
=1-P(@+1-P)+2-P(eAny)—1 (A4,A3)
= 1-P(@) —P(y) +2- P(pA ) 4//
(© 2004 HUT / Laboratory for Theoretical Computer Science
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Agent 1 Agent 2 Outcomefor Agent 1
Proposition  Belief Bet Stekes AAB AA-B -AA-B
A 04 A 4106 -6 4
B 0.3 B 3to7 -7 3 -7 3
AVB 0.8 -(AvB) 2to8 2 2 2 -8

-11 -1 -1 -1

Q:l Choices made by Agent 2 guarantee that Agent 1 loses moneyj
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INFERENCES USING
FULL JOINT DISTRIBUTIONS

Consider a system of n random varialeS Xi,..., X, that may range
over different domains.

An atomic event X; = X3 A--- A Xp = X, is an assignment of
particular values Xq,...,X, to the variabeS Xq,...,X,.

The full joint probabilityistribution P(X3,...,X,) assigns
probabilities to all possible atomic events.

The joint probability distribution grows rapidly with respect to the
number of varialeS (€-81 2" entries for n Boolean variabeS)-

|:| It is infeasible to specify/store the whole distribution.

/
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For Boolean random variables, atomic events correspond to
conjunctions of literals (propositional atoms or their negations).

Atomic events are mutually exclusive: any conjunction of atomic
events is necessarily false.

The disjunction of all atomic events is necessarily true: entries in
the joint probability distribution sum to 1.

Probabilities provided by the joint probability distribution can be
used for computing Probabilities of arbitrary sentences ¢

P(@) is the sum of probabilities
assigned to atomic events satisfying @.

Also, conditional probabilities P(@| @1, ..., @) can be computed by
POA@LA - An)

P(@|@,....¢n) =

P(@ A Agh)

/
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ﬁ@xample. For the Boolean random variables Cavity and Toothache: \

toothache | —toothache
cavity 0.04 0.06
—cavity 0.01 0.89

1. cavity A —toothache is one of the atomic events,

2. P(cavity) = P(cavity A tootache) + P(cavity A —toothache)
=0.04+0.06 =0.10,

3. P(cavityV toothache) = 1 — P(—cavity A —toothache)

=1-0.89=0.11,
. P(cavity A toothache 0.04
4. Plcaity| toothache) — - P(toothache) - 0.04+ 0.01
=0.80.

/
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Conditioning'

0 Marginalization is a process where certain variaeS Y1,..., Yy are
summed out from a probability distribution:

Example. Recall from the preceding example P(cavity) =
P(cavity A toothache) 4 P(cavity A —toothache) = 0.10.

0 The conditioning rule is a variant of marginalization based on

conditional probabilities:
P(Xl,...,Xn) = P(Xl,...’Xn | yl,...,ym)P(yl,...,ym).

[0 These ruleS can be used in derivations of probability expressions.

\ /
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INDEPENDENCEI

Example. Suppose that we build a combined model with variables
Cavity, Toothache, and Weather.

Question: how P(cavity, toothache, Weather = cloudy) is related to
P(cavity, toothache)?

00 Propositions @ and Y are (absolutely) independent iff

PleAw) =P(@P(Y) < P(e|y) =P(@) < P(W|@) =P(V)
whenever P(@| W) and P(Y | @) are defined.

Example. Assuming Weather = cloudy and cavity A toothache
independent of each other, we obtain

P(cavity, toothache, Weather = cloudy) =

P(cavity, toothache) P(Weather = cloudy).

/
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00 Bayes' rule (or Bayes' theorem) is derived from the product rule:

P(o|W)P(W) =P(eAW) =P | 9)P(¢)
— Py g =R

O Bayes’ rule can be used for diagnostic inference, i.e. computin8
P(d | s) on the basis of other three probabilities:

* P(d) for a disease d,
* P(s) for a symptom s, and
« P(s|d) for the causal relationship of g 3nd d.

given that P(¢) > 0.

O A generalization for joint distributions or random variabes:

p(y | %) = P LYP(Y)

- o Y,

(© 2004 HUT / Laboratory for Theoretical Computer Science
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O Bayes' rule can be further generalized by conditioning:

P(@AWAX)
P(WAX)

PlerwAx) PeAX)  P(x)
Plerx)  PX)  PWAX)

P(W | @A X)P(@] X)
P(W|X) '

Here the sentence X stands for any background evidence.

Pl@|WAX) =

0 For random variaeS and a background evidence E this becomes

P(X|Y,E)P(Y | E)

P(Y | X,E) = (X |E)

(© 2004 HUT / Laboratory for Theoretical Computer Science
Uncertainty

é T-79.230 / Spring 2004 i
Applying Bayes' Rule: the Simple Case'

Example. Consider Boolean random variadeS S and M which mean

“the patient has a stiff neck” and “the patient has menin8itis,
respectively.

O Given the probabilities P(s| m) =1/2, P(m) = 1/50000, and
P(s) = 1/20, we may apply Bayes' rule to compute

P(s| mP(m
pm| s = 7 |p<i>< )
_3mow _ L
1 .
5 5000

0 Diagnostic knowledge is often more fragile than causal one:
an epidemic increases P(m) and P(m| s) but not P(s| m).

\ /
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Normalization I

Example. Suppose we are interested in a further condition of the
patient: W means that “the patient has a whiplash injury”.

O The relative likelihood of meningitis and whiplash can be assessed
without knowing the prior probability p(s) of the symptom.

1
"50000 _ L
=

1
~ P(s|w)P(w) Zg 80

1000

O This kind of comparison may be enough for decision making-

0 Would it be possible to compute the value of P(m| s)
without assessing the prior probability p(s) directly?

\_ /
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O One possibility is to consider an exhaustive set of cases:
By combinin8 P(m|s)+ P(—-m|s) = 1 with products
P(m|s)P(s) = P(s| mP(m) and
P(=m|s)P(s) = P(s| -m)P(-m)
P(s| m)P(m) +

we obtain P(s) = P(s| =m)P(—m).

O Then P(m|s) = aP(s| mP(m) and P(-m|s) = aP(s| -m)P(-m)
follow for a = 1/P(s).

O Thus a is a normalizing constant that scaleS the products
P(s| m)P(m) and P(s| -m)P(—m) so that they sum to 1.

[0 Generalizing for arbitrary random variables X and V-
P(Y | X) =aP(X | Y)P(Y)

where o makes the entries in P(Y | X) sum to 1.

\ /

(© 2004 HUT / Laboratory for Theoretical Computer Science

31

32



A

A

T-79.230 / Spring 2004 Uncertainty

33

/

Combining Evidence'

Example. Recall the dentist example (Boole2" random variable®
Cavity and Toothache) and a further Boole2" random variable Catch
meaning that “a cavity is detected with a steel probe”.

0 Suppose that we know the probabilities
P(cavity | toothache) = 0.8 and P(cavity | catch) = 0.95.

0O What if both toothache and catch are known?
O We know by Bayes' rule that P(cavity | catch A toothache) =

P(catch A toothache | cavity)P(cavity)
P(catch A toothache)

O Many (nontrivial) probabilities have to be known!

~
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Bayesian Updating'

[ The ide@ is to incorporate pieces of evidence one at a time.

P(toothache | cavity)
P(toothache)

2. Using toothache as a conditioning context:

1. P(cavity | toothache) = P(cavity)

P(cavity | toothache A catch) =

P(catch | toothache A cavity)
P(catch | toothache)

P(toothache | cavity) P(catch | toothache A cavity)
P(toothache) P(catch | toothache)

P(cavity | toothache)

P(cavity)

|:| Still many probabilities have to be specified!

KD Bayesian updating is order-independent.

(© 2004 HUT / Laboratory for Theoretical Computer Science
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Conditional Independence'

For instance, Boolean variables Tootache and Catch are
conditionally independent given Cavity <—-
P(Catch | Toothache, Cavity) = P(Catch | Cavity) and
P(Toothache | Catch, Cavity) = P(Toothache | Cavity).

Using these, We obtain p(cavity | toothache A catch) =

P(toothache | cavity) P(catch | cavity)

P it
(cavity) P(toothache)  P(catch | toothache)

Finally, the product P(toothache)P(catch | toothache) in the
denominator can be eliminated by normalization:

P(Z | X,Y)=aP(Z)P(X | Z2)P(Y | Z).

/
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Naive Bayes Model I

In a sense, Cavity separates Tootache and Catch because it is a

direct cause of both variaHeS-

A commonly occurring Pattern is that a single cause directly
influences a number of effects, all of which are conditionally
independent, given the cause.

In this case, the full joint distribution can be written as

P(Cause, Effect, .. ., Effect,,) = P(Cause) |'| P(Effect; | Cause).
i

|:| Conditional independence assertions allow probabilistic

systems to scale up.

~

In practice, the naive Bayes model can work surprisingly well even

if the conditional independence assumption is not fully true.

/
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SUMMARYI

O Uncertainty arises because of both laziness and ignorance.
O Probabilities provide a way of summarizing the agent’s beliefs.

O Bayes’ rule/theorem allows unknown probabilities to be
computed from known, stale ones.

0 The full joint probabilityistribution specifies the probability of
each complete assignment of values to all random variabeS:

O The joint distribution is typically far too large to create or use.

O Sometimes it can be factored using conditionalindependence
assumptions which make the naive Bayes model effective.

/
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QUESTIONSI

Reconsider soccer playing agents:

O Which factors cause uncertainty in this domain?

In particular, consider factors that are related with
1. the environment of agents,

2. perceptual information, and

3. outcomes of actions.

O Is it possiHe to deal with these factors using probabilities?

O What are the ways for determining the probabilities involved?

\

~

/
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