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REPRESENTING KNOWLEDGE IN
AN UNCERTAIN BDOMAIN

probabilistic representations of the world.

0 A Bayesian network is a data structure representing the

distribution P(X73,...,X,,) is obtained.

networks, causal networks ©" knowledge maps.

\

0 Conditional independence relations provide means to simplify

dependencies among variables X1, ..., X,, of a given domain.

O As a result, a compact specification of the full joint probability

O Bayesian networks are also called belief networks, probabilistic

/
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Bayesian Networks: Syntax'

Definition. A belief network is a directed acyclic graph (DAG)
G={{X1,...,X,}, E) where

1.
2.

\_

nodes X1, ..., X, are discrete/continuous random variables,

the set of arrows (or links)

Eg{Xl,,Xn}Q:{<X“X]>|1§z§nand ISJSTL},

. an arrow (X,Y) € E of G represents a direct influence

relationship between the variables X and Y, and

. each node X is assigned a completely specified probability

distribution P (X |Parents(X)) where
Parents(X) ={Y | (Y, X) € E}.

/
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Example. Consider a network based on five Boolean random variables:

1.
2.

Burglary = “a burglar enters our home".

Earthquake = “an earthquake occurs”.

. Alarm = "our burglar alarm goes off".

The alarm is fairly reliable at detecting a burglary, but may
occasionally respond to minor earthquakes.

. JohnCalls = "Our neighbor John calls and reports an alarm.”

He always calls when he hears the alarm, but sometimes confuses
telephone ringing with the alarm.

. MaryCalls = “Our neighbor Mary calls and reports an alarm “.

She likes loud music and sometimes misses the alarm altogether.

Shorthands B, E, A, J, and M are also introduced for these variables.

.

/
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( /D The relationships of the variables are given as a Bayesian networm \ / — — \
Conditional Independence ReV|S|tedI

O The probability distributions P(X | Parents(X)) associated with

variables X are given as conditional probability tables (CPTs).

A

Definition. Let P(¢)) > 0. Sentences ¢; and ¢y are conditionally

- independent given < P(61 A és | ) = P(én | )P(02 | )
Burglary iizi Earthquake ) [ Proposition. If P(y)) > 0, P(¢1 Av) >0, and P(¢2 A1) > 0, then
¢1 and ¢ are conditionally independent given ¢y <—

P(¢1| p2 ANYp) = P(d1 | 9) and P(d2 | o1 A¢) = P(¢2 | ) hold.

B E| PQA)
L :gj Proof. For the former equation, we note that
FF| oo P(p1 N2 | ) = P(o1 | ) P2 | ¥)
o Hopg) - Pgue) s
—— AP = P(o1 A2 ANY)P(Y) = P(¢1 A)P(d2 AY)
—— Lo = P(gr | g2 ny) = Pliiani) - PG  p(g, | )

\_ / \_ /
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\ /THE SEMANTICS OF BAYESIAN NETWORKS '\ / A Method for Constructing Bayesian Networks' \

O A Bayesian network for the random variables X1,..., X, is a 0 In a Bayesian network G = ({X1,..., X,,}, E), a node X; # X, is

A

representation of the joint probability distribution P(X7q,..., X,,). a predecessor of X; <= there are nodes Y1, ...,Y,, such that
O As before, a shorthand x; is used for the atomic event X; = x;. Yi=X;, YVin=X;,and Vje{1,...,m— 1} (¥}, Yj11) € E.
0 Arrows encode conditional independence relations and therefore 0 Because G is a DAG, we may assume that the nodes X,..., X,
the probabilities of atomic events are determined by are ordered so that the predecessors of X; are among

.. i—1- i) C o i—1f-
P, n) = [T, P(a; | Parents(z,)) X1,...,X;-1. Thus also Parents(X;) C {X1,...,X;_1}

where Parents(z;) refers to the assignments of Y € Parents(X;). [ By the definition of conditional probability, we have that
Example. Let us compute the probability of j A m A a A —b A —e: P(x1,...,2n) =
P(jAmMAaA=bA—e) P(z, | T 1,...,x1)P(mn_1,...,x1) =
= P(jla)P(m|a)P(a|=b A —e)P(—e)P(—d) P(zy | Tp-1,.- s 21)P(®pn-1 | TZpn-2,...,21) - P(xa | 1)P(x1) =
= 0.9 x0.7 x 0.001 x 0.999 x 0.998 = 0.00063 . [Tey P | @imny ooy 21).

\ / \
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A Bayesian network is a correct representation if each variable Xis\
conditionally independent of its predecessors Y given Parents(X).

0 Under the assumptions on conditional independence and node
ordering, it can be established that

P(XZ | Xi—l, .. .,Xl) = :P(_XvZ | Parents(Xi)). (1)

O The choice of Parents(X) for a random variable X affects how far
conditional independence assumptions can be applied.
O Parents(X) should contain all variables that directly influence X.

Example. Only Alarm directly influences MaryCalls. Given Alarm,
MaryCalls is conditionally independent of the other variables:

P(MaryCalls | JohnCalls, Alarm, Farthquake, Burglary)
= P(MaryCalls | Alarm).

/

© 2004 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2004 Probabilistic Reasoning 10

4 N

On Compactness and Node Ordering'

0 A Bayesian network can be a compact representation of the joint
probability distribution (locally structured or sparse system).

O If each Boolean variable directly influences at most k other, then
only n2* probabilities have to be specified (instead of 2").

Example. When n = 30 and k& = 5, we would have to specify
n2% = 960 and 2" = 1073741824 probabilities, respectively.

O A clear trade-off: number of arrows (accuracy of probabilities)
versus cost of specifying extra information (extending CPTs).

0 Choosing a good node ordering is a non-trivial task.

O Heuristics: the root causes of the domain should be added first,

then the variables influenced by them, and so forth.

\ /
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Example. Let us reconstruct the Bayesian network for the alarm

domain using a different node ordering:
MaryCalls, JohnCalls, Alarm, Burglary, Earthquake
1. As the first node, MaryCalls gets no parents.

2. When JohnCalls is added, MaryCalls becomes a parent of
JohnCalls, as P(JohnCalls | MaryCalls) # P(JohnCalls).

3. Similarly, Alarm depends on both MaryCalls and JohnCalls.

4. Since P(Burglary | Alarm, JohnCalls, MaryCalls) =
P(Burglary | Alarm), the only parent of Burglary is Alarm.

5. Nodes Burglary and Alarm become parents of Earthquake, as
P(Earthquake | Burglary, Alarm, JohnCalls, MaryCalls) =
P(Earthquake | Burglary, Alarm).

\_ /
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O The resulting Bayesian network is given below on the left:

MaryCalls

Earthquake

Earthquake

O The one on the right is obtained with another ordering and it as

Burglary

complex (31 probabilities) as the full joint distribution!

\ /
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O Mutually independent sets of nodes can be distinguished using the
notion of direction-dependent separation (or d-separation).

Definition. Let X, Y and FE be sets of nodes/variables. Then X and
Y are conditionally independent given F, if every undirected path from
a node in X to a node in Y is d-separated by E.

o | O—+O+O—0+0"
@ | O—-O~=O—-010
@ | O OO

\_ /
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xample. Let us have a look on the following Bayesian network which\

describes some features of a car’s electrical system and engine.

According to this model,

* Gas and Radio are independent given Battery, and

* Gas and Radio are dependent given Starts.
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EFFICIENT REPRESENTATION OF
CONDITIONAL DISTRIBUTIONS

O Specifying conditional probability tables means often a lot of work.

0 To ease this process, some canonical distributions such as
deterministic and noisy logical relationships have been proposed.

O When using a canonical distribution it is often enough to supply
certain parameters rather than a complete CPT.

O There are also canonical continuous distributions such as Gaussian
distributions and probit/logit distributions.

\_ /
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Deterministic Nodes'

O In the deterministic case, there is no uncertainty and the value of

Probabilistic Reasoning

X is obtained as a (logical) function from those of Parents(X).

O Deterministic nodes can also encode other fixed numerical
functions depending on the variables involved.

Example. Define NorthAmerican < Canadian vV US V Mexican.
This corresponds to specifying a CPT as follows:

Canadian | US | Mezican | NorthAmerican
F F F 0.0
T F F 1.0

\ /
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Noisy Logical Relationships'

0 Noisy logical relationships add some uncertainty to the scenario.

Probabilistic Reasoning

~

O A noisy OR relationship comprises the following principles:
1. Each cause has an independent chance of causing the effect.
2. All possible causes are listed.

3. Whatever inhibits some cause from causing an effect is
independent of whatever inhibits other causes from causing the
effect. Inhibitors are summarized as noise parameters.

0 A noisy OR relationship in which a variable depends on & parents
can be described using k parameters.

In contrast to this, 2¥ entries are needed if a full CPT is specified.

\_ /
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/Example. Let us consider a medical domain including the variables \
Fever (a symptom), Cold, Flu, and Malaria (diseases). Using noise
parameters P(—fever | cold, =flu, ~malaria) = 0.6,

P(—fever | =cold, flu,~malaria) = 0.2, and

P(—fever | =cold, =flu, malaria) = 0.1, we get the following CPT:

Cold Flu Malaria | P(Fever) | P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=0.2x0.1

T F F 0.4 0.6

T F T 0.94 0.06 =0.6 x 0.1

T T F 0.88 0.12=0.6 x 0.2

T T T 0.988 0.012=0.6 x0.2x 0.1
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Bayesian networks with Continuous Variables'

O Continuous variables can be discretized but as a side-effect the
resulting CPTs can become very large.

over the domains of continuous variables.

O A hybrid Bayesian network involves both discrete and
continuous variables.

\_

O Many real-world problems involve continuous quantities/variables.

O Another possibility is to use standard probability density functions

\

/
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Example. Consider a system one Boolean random variable Subsidy
and three continuous random variables Harvest, Cost, and Buys.

Guse) - GanesD)
Com)

For Cost, we need to specify P(Cost | Harvest, Subsidy).

0 The discrete parent is handled by explicitly enumerating both
P(Cost | Harvest, subsidy) and P(Cost | Harvest, ~subsidy).

[0 The parameters of the cost distribution (e.g. linear Gaussian
distribution) are given as a function of the variable Harvest.

~

/
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EXACT INFERENCE IN BAYESIAN NETWORKSI

O An agent gets values for evidence variables from its percepts and

asks about the possible values of other variables so that it can
decide what action to take (recall the decision theoretic design).

0 The basic task of a probabilistic reasoning system is to compute
P(X | FEy =e1,...,Em = en) given a query variable X and

exact values eq,...,e,, of some evidence variables F1,..., EF,,.

O The remaining variables Y7,...,Y,, act as hidden variables.

Examples. Recalling the alarm example, the problem is to calculate
distributions such as P(Burglary | JohnCalls, MaryCalls) and
P(Alarm | JohnCalls, Earthquake)?

~

\_ /
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Inference by Enumeration'

0 We introduce shorthands E and Y for Ey, ..., E,, and
Y1,...,Y,, respectively, and similarly e and y for their values.

O A query P(X | e) can be answered by exhaustive enumeration:

P(X |e)=aP(X,e)=a) P(X.ey)

where « is a normalizing constant.

O If a Bayesian network is used, this leads to the computation of
sums of products of conditional probabilities from the network.

O The time complexity for a network of n variables is of order 2.

\ /
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Example. Consider the query P(B | j,m) in the burglary example.

\

For this query, F and A are hidden variables and enumeration amounts
to computing the following distribution (in a depth first fashion):

P(B|j,m) = «aP(B,j,m)

= ay >, P(B,ea,j,m)

= aX, T, P(B)P()P(a | B,e)P( | a)P(m | a)
aP(B)Y, P(e) ¥, P(a| B,e)P(j | a)P(m| a)

= «(0.00059224,0.0014919)

~ (0.284,0.716)

The details of computing P(b | j, m) are analyzed next.

\_ /
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P(e)
002

P(ab,e)
.95

P(—albe)
.06

P(—alb,e)

P(alb,—e)
.05 .94

|:| Certain subexpressions are computed repeatedly.

(© 2004 HUT / Laboratory for Theoretical Computer Science
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Variable Elimination AIgorithmI

The enumeration algorithm can be improved substantially by
doing calculations in a bottom-up fashion using facters which are
matrices of probabilities.

The pointwise product of two factors f1(X,Y) and f2(Y,Z) is
defined by (fl X fg)()(,Y7 Z) = fl(X,Y)fg(Y, Z)

A variable X can be summed out from a product of factors
£i(X,Y) by computing > (fi(z,Y) x ... x f,(z,Y)).

Multiplication takes place only when summing out variables.

Every variable that is not an ancestor of a query variable or
evidence variable is irrelevant to the query and thus removable.

/
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Example. The computation of the previous distribution

takes place bottom-up using factors as follows:
1.
2.

. E is summed out similarly and P(B | j, m) = afp(B) x £; u(B).

~

P(B|j,m)=aP(B)) P(e)) P(a|B,e)P(j|a)P(m|a)

far(A) = (P(m | a), P(m | —a));
f;(A) is defined analogously;
f4(A, B, E) is three-dimensional;

the variable A is summed out from the product of these three:

£, (B, E) = (fala, B, E) x f;(a) x fu/(a));

a

/
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The Complexity of Exact Inference'

A polytree is a sin8ly connected graph: there is at most one
undirected path between any two nodes.

If a belief network forms a polytree, the probability distribution
P(X | e) can be computed very efficiently (in linear time).

For multiply connected networks, in which at least two variables
are connected by several paths, variable elimination can have
exponential time and space complexity in the worst case.

In general, exact inference in Bayesian networks is NP-hard (even
#P-hard) as it includes propositional inference as a special case.

/
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Example. Consider clustering the nodes Sprinkler and Rain in the
following multiply connected network:

Clustering Methods' \

Multiply connected Bayesian networks can be transformed into
polytrees by combining some nodes into cluster nodes.

S
F .50

P(W)
99
90
90

- /

o
(e}

=

P(R)

mTTmH Ao
mH T A|D
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(o

The following polytree network is obtained:

P(S+R=x)
cC| TT TF FT FF

@ T| 08 02 72 18
F

40 10 40 .10

S+R P(W)
TT .99
TF .90
FT .90
FF .00

Linear time algorithms can be used for query answering, but the
size of the network grows exponentially in the worst case.

Typically, there are several ways to compose cluster nodes and it is

/

non-trivial to choose the best way to perform clustering.
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APPROXIMATE INFERENCE IN
BAYESIAN NETWORKS

Randomized sampling algorithms provide approximate answers
whose accuracy depends on the number of samples generated.

Here sampling is applied to the computation of posterior
probabilities given a prior distribution (a Bayesian network).
There are several several approximation methods including
— Direct sampling

— Rejection sampling

— Likelihood weighting

/
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Direct Sampling Methods I

O In direct sampling, the world described by a Bayesian network
(without evidence) is simulated stochastically.

0 Atomic events are randomly generated in topological order by
selecting definite values for random variables.

O The value for a random variable X is chosen according to the
conditional probability table associated with X.

O Prior sampling produces the event x1, ..., x, with probability

n
.7xn) = HP(xl | ParentS(Xi)) = P(-Tlg e 71'71)'
i=1

Sps(x1,..

/
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O The posterior distribution P(X | e) = B IS estimated by

counting the frequencies with which events occur.
0 The number of samples N affects accuracy:

S Ty)

N, ..
lim PS(xla

i N  Tn) = P(x1,...,2Tn).

= Sps(.’L'l, e

O Logic sampling is not very useful if the event e occurs very rarely.

Example. Let us produce one sample the lawn watering domain:

P(Cloudy) = (0.5,0.5) = return true
P(Sprinkler | cloudy) = (0.1,0.9) =  return false
P(Rain | cloudy) = (0.8,0.2) = return true
P(WetGrass | —sprinkler, rain) = (0.9,0.1) = return true

Example. E.g., P(WetGrass | sprinkler A rain) converges slowly.

/
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Rejection Sampling in Bayesian Networks'

O In its simplest form, rejection sampling can be used to conditional
probabilities such as P(X | e).

O Samples are generated from the prior distribution, but samples
which do not match the evidence are rejected.

[ The estimated distribution P(X | ) = a Npg(X,e) = Npelel.

O With sufficiently many samples P(X | e) ~ Z5) = P(X | e).

O Rejection sampling tends to reject too many samples.

Example. Suppose that out of 100 samples, 73 are rejected as
Sprinkler = false. Out of the remaining 27 samples, 8 satisfy
Rain = true. Thus P(Rain | sprinkler) =~ a(8,19) = (0.296,0.704).

\_ /
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Likelihood Weighting'

O Likelihood weighting is similar to rejection sampling, but the
values of evidence variables E are kept fixed while sampling others.

0 The CPTs of the Bayesian network are consulted to to see how
likely the event e is.

O In this way, the conditional probability P(e | x,y) is interpreted as
a likelihood weight for that particular run.

O An estimate of P(X =z | e) is obtained as a weighted proportion
of runs with X = x among the runs accumulated so far.

O Likelihood weighting converges faster than rejection sampling.

0 Getting accurate probabilities for unlikely events is still a problem.

\ /
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Example. Let us estimate P(Rain | sprinkler, wetgrass) by likelihood
weighting. Initially, the weight w is set to 1.0.

The values of variables are chosen randomly as follows:
1. P(Cloudy) = (0.5,0.5) = cloudy is randomly chosen.

2. Sprinkler is an evidence variable that has been set to true:
w is revised to w x P(sprinkler | cloudy) = 0.1.

3. P(Rain | cloudy) = (0.8,0.2) = rain is randomly chosen.

4. WetGrass is an evidence variable with value true:
w is revised to w X P(wetgrass | sprinkler, rain) = 0.099.

|:| We have completed a run saying that Rain = true given
sprinkler and wetgrass with a likelihood weight 0.099.

\_ /
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OTHER APPROACHES TO
UNCERTAIN REASONING

O Early expert systems were based on strict logical reasoning.

O Probabilistic techniques were dominating in the second generation,
but these techniques suffered from the exponential blow-up of the
joint probability distribution w.r.t. the number of variables.

0 Consequently, many alternatives to probabilities were pursued:

1. Default reasoning

2. Rules with certainty factors
3. Dempster-Shafer theory

4. Fuzzy logic

\ /
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Default Reasoning'

[0 Reasoning by default means inferring something in the absence of
any information to the contrary.

O Provides a compact way to encode exceptions to general principles.
O A qualitative approach to handle uncertainty.

0 Default reasoning violates the monotonicity property of classical
logic: if 1 = ¢ and X1 C %5, then X5 = ¢.

O Several formalizations of non-monotonic reasoning have been
proposed: default logic [Reiter, 1980], circumscription
[McCarthy, 1980], autoepistemic logic [Moore, 1983], ...

O Implementation techniques have substantially improved during 90s.

\_ /
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O Logic programs with negation as failure to prove from an
important subclass of non-monotonic theories.

Example. Let us describe the applicability of actions using rules:
{ doable(A) < preconds(A) A not exceptional(A),

exceptional(A) <« not deterministic(A),

exceptional(A) «— delayed(A) }
0 The semantics of “not ¢" is different from classical negation —¢.

O The conclusion doable(run) can be drawn by the rules above
given the premises preconds(run) and deterministic(run).

O Such a conclusion is no longer possible if delayed(run) is
introduced as an additional premise.

O Dropping the premise deterministic(A) has the same effect.

© 2004 HUT / Laboratory for Theoretical Computer Science
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/ Logical Rules and Certainty FactorsI \

[] Reasoning systems based on classical logic have important

Probabilistic Reasoning

properties that are lacked by their probabilistic counterparts:

1. Locality: a rule can be used for making inferences without
worrying about the other rules in the system.

2. Detachment: if a sentence  is proven to be valid, it can be
detached from its justification (proof), as it universally true.
3. Truth-functionality: the truth values of complex sentences

can be computed from the truth values of their components.

O Unfortunately, problems arise with truth-functionality and chained
inferences, if logical rules are equipped with certainty factors.

Example. For instance, Sprinkler — WetGrass and

\WetGmss — Rain tend to imply Sprinkler — Rain. J

© 2004 HUT / Laboratory for Theoretical Computer Science
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Dempster-Shafer theory I

O Dempster-Shafer theory has been designed to deal with the
distinction between uncertainty and ignorance.

00 The belief function Bel(X) gives the probability that the evidence
obtained so far supports X.

Example. Consider flipping a coin under the following circumstances:

1. If the coin is doubted to be unfair (nothing can be assumed about
its behavior), then Bel(heads) = 0 and Bel(—heads) = 0.

2. If the coin is fair with a certainty of 0.9, then we have
Bel(heads) = 0.5 x 0.9 = 0.45 and Bel(—heads) = 0.45

|:| We obtain probability intervals [0, 1] and [0.45, 0.55] for Heads.

\ /
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Fuzzy Logic I

O Fuzzy set theory is about specifying how well an object satisfies
a vague description rather than uncertainty.

Example. For instance, a statement like "Mika Myllyl3 is tall”
can be assigned a truth value between 0 and 1
(even if it is known how tall he is).

O The fuzzy truth of complex sentences is defined truth-functionally:
T(¢ Ap) = min(T'(¢), T(¥)),

T(¢V ) = max(T(9), T()), and
T(=A) =1 - T(A).

0 Despite of semantic difficulties, fuzzy logic has been very

successful in commercial applications involving automated control.
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SUMMARY'

0 Conditionalindependence information can be used for
structuring and simplifying knowledge about an uncertain domain.

0 Bayesian networks provide a natural way to represent conditional
independence information.

O A Bayesian network is a complete (and often also very compact)
representation of the joint probability distribution.

O Efficient algorithms exist for Bayesian networks that are
topologically polytrees, but reasoning with Bayesian networks is
NP-hard in general.

O Probabilities can be estimated by sampling methods.
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QUESTIONSI

O Build a Bayesian network for the soccer domain.

Probabilistic Reasoning

1. Choose appropriate variables for the description of the domain.
2. Choose an ordering for the variables.

3. Construct the actual belief network by
(i) analyzing dependencies among variables and
(i) defining CPTs for each variable.

O Make both causal and diagnostic inferences using the network.
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