2

MAKING COMPLEX DECISIONS

Outline

- ➤ Sequential Decision Problems
- ➤ Value Iteration
- ➤ Policy Iteration
- ➤ Decision-Theoretic Agents

Based on the textbook by Stuart Russell & Peter Norvig:

Artificial Intelligene, Modern Approach (2nd Edition)

Capter 17; excluding Sections 17.4, 17.6, and 17.7

C 2004 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2004

Complex decisions

SEQUENTIAL DECISION PROBLEMS

Example. Consider an agent situated in the following environment:

- (b)
- The agent may perform actions *North*, *South*, *East*, and *West* in order to move between squares (or states) $(1,1), \ldots, (4,3)$.
- ➤ Moving towards a wall results in no change in position.
- The operation of the agent stops and it receives a *reward/* punishment if it reaches a square marked with +1/-1.

Transition Model

- ▶ In a *deterministic setting* the outcomes of actions are known, and the agent may **plan** a sequence of actions which moves it to (4,3).
- ➤ This becomes impossible if actions are *nondeterministic/unreliable*.
- ightharpoonup A **transition model** assigns a probability T(s,a,s') to the event that the agent reaches state s' when it performs action a in state
 - s. Transitions are Markovian in the sense of Gapter 15.

Example. (Continued) Each one of the four actions *North*, *South*, *East*, and *West* moves the agent

- 1. to the intended direction d with a probability of 0.8, and
- 2. at right angles to the direction d with probabilities 0.1 and 0.1.

© 2004 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2004

Complex decisions

Example. If an action sequence S = [North, East] is performed in state

(3,2) the agent reaches states with following probabilities:

$$P_{(3,1)} = 0.1 \times 0.1 = 0.01$$

$$P_{(3,2)} = 0.8 \times 0.1 = 0.08$$

$$P_{(3,3)} = 0.8 \times 0.1 + 0.1 \times 0.1 = 0.09$$

$$P_{(4,2)} = 0.1 + 0.1 \times 0.8 = 0.18$$

$$P_{(4,3)} = 0.8 \times 0.8 = 0.64$$

These are easily inspected from a (partial) reachability graph:

Assigning Utility to Sequences of States

- ➤ The utility function *U* is based on a sequence of states an **environment history** rather than a single state.
- For now, we stipulate that in each state s, the agent receives a **reward** R(s), which may be positive or negative.
- ➤ An additive utility function is assumed: the utility of an environment history is just the *sum* of rewards received.

Example. In our example, the reward $R(s) = -\frac{1}{25}$ is for all states s except terminal states whichave rewards +1 and -1, respectively. If the agent reaches the +1 state after 10 steps, its total utility is 0.6. The reward of $-\frac{1}{25}$ gives the agent an incentive to reach (4,3) soon.

© 2004 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2004

Complex decisions

Markov Decision Processes

- ➤ The specification of a decision problem for a fully observable environment with a Markovian transition model and additive rewards is called a **Markov decision process** (MDP).
- ➤ An MDP is defined by the following three components:
 - 1. Initial state: s_0
 - 2. Transition model: T(s, a, s') for all states s, s', and actions a.
 - 3. Reward function: R(s) for all states s.
- \triangleright A solution is a **policy** π , i.e. a mapping from states to actions.
- ➤ In the sequel, we will study two basic techniques for computing policies, namely value iteration and policy iteration.

Optimal Policies

- \blacktriangleright We write $\pi(s)$ for the action recommended by π in a state s.
- The quality of a policy π is measured by the *expected utility* of the possible environment histories generated by that policy.
- An **optimal policy** π^* is a policy that yields the highest expected utility (recall the MEU principle).
- Figure Given an optimal policy π^* , the agent determines the current state s using its percept and chooses $\pi^*(s)$ as the next action.
- ➤ An optimal policy can be viewed as a description of a simple reflex agent extracted from the specification of a utility-based agent.

© 2004 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2004

Complex decisions

_

Example. An optimal policy for the square world appears on the left.

The expected utilities for individual states are given on the right.

- ➤ The policy is very conservative (tries to avoid punishment).
- ➤ If the cost of moves is increased, then the optimal policy becomes different for the state (3,1): *West* is replaced by *North*.
- ► If the cost of moves is decreased to $\frac{1}{100}$, then *West* is cho^{sen} instead of *North* in state (3,2).

Optimality in Sequential Decision Probems

- ▶ We are interested in the possible choices for the utility function U_h on environment histories $[s_0, s_1, \dots, s_n]$.
- ➤ The first question is to answer whether there is a **finite horizon**, i.e. $U_h([s_0, s_1, \ldots, s_{N+k}]) = U_h([s_0, s_1, \ldots, s_N])$ for some fixed time N and every k > 0.
- ➤ If not, then we have an **infinite horizon**.
- ➤ The optimal policy for a finite horizon is **nonstationary**.
- ➤ With no fixed time limit, the optimal action depends only on the current state, and the optimal policy becomes **stationary**.

© 2004 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2004

Complex decisions

10

Calculating the Utility of State Sequences

- A preference-independence assumption: the agent's preferences are **stationary**: if state sequences $[s_0, s_1, ...]$ and $[r_0, r_1, ...]$ begin with equally preferred s_0 and r_0 , then these sequences should be preference ordered like $[s_1, s_2, ...]$ and $[r_1, r_2, ...]$.
- Under stationarity there are just two ways to assign utilities: **Additive rewards**: $U_h([s_0,s_1,\ldots]) = R(s_0) + R(s_1) + R(s_2) + \ldots$. **Discounted rewards**, which generalize additive rewards: $U_h([s_0,s_1,\ldots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots$ where $0 \le \gamma \le 1$ is a **discount factor**.
- ▶ In discounting, future rewards $R(s_i) \le R_{max}$ where i > 0 are considered less valuable than the current reward $R(s_0)$.

9.230 / Spring 2004 Complex decisions

- ➤ There are three ways to deal with infinite state sequences:
 - 1. With discounted rewards bounded by R_{max} , the utility of an infinite sequence becomes finite:

$$U_h([s_0, s_1, \ldots]) = \sum_{t=0}^{\infty} \gamma R(s_t) \le \sum_{t=0}^{\infty} \gamma R_{max} = \frac{R_{max}}{1-\gamma}.$$

- 2. Given a **proper policy**, which is guaranteed to reach a terminal state, the discount factor $\gamma = 1$ can be used.
- 3. Yet another possibility is to compare infinite sequences in terms of the **average reward** obtained per time step.
- \blacktriangleright An optimal policy π^* is obtained as

$$\operatorname{arg} \max_{\pi} \sum_{[s_0, s_1, \dots]} P([s_0, s_1, \dots] \mid \pi) U_h([s_0, s_1, \dots])$$

where $P([s_0, s_1, ...] \mid \pi)$ is determined by the transition model.

© 2004 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2004

Complex decisions

12

VALUE ITERATION

- ▶ In value iteration, the basic idea is to compute the utility U(s) for each state s and to use these utilities for selecting optimal actions.
- \blacktriangleright It is difficult to determine U(s) because of uncertain actions.
- ➤ Given a transition model, the agent is supposed to choose the action that maximizes the expected utility of the subsequent state:

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') U(s').$$

➤ The utility of a state *s* is the immediate reward for that state plus the discounted MEU of the next states [Bellman, 1957]:

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') U(s').$$

13

14

The Value Iteration Algorithm

- \triangleright Given n states, the Bellman equation leads to a set of n non-linear equations for utilities that can be approximated by *iteration*.
- \blacktriangleright We write $U_i(s)$ for the utility of state s at the i^{th} iteration.
- ightharpoonup The initial value $U_i(s) = 0$ for each state s.
- ➤ One iteration step, called a **Bellman update**, is defined by

$$U_{i+1}(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') U_i(s')$$

for each $i \ge 0$ and for each state s.

➤ The following *termination condition* is used by the algorithm:

$$\max_{s} |U_{i+1}(s) - U_{i}(s)| < \frac{\varepsilon(1-\gamma)}{\gamma}.$$

© 2004 HUT / Laboratory for Theoretical Computer Science

Complex decisions

➤ Value iteration eventually converges to a unique set of solutions of the Bellman equations.

Convergence of Value Iteration

 \triangleright The Bellman update is a **contraction** by a factor of γ on utility vectors: $\max |U_{i+1}(s) - U(s)| \le \gamma \max |U_i(s) - U(s)|$ for all $i \ge 0$.

Example. For the square world, value iteration converges as follows:

- \blacktriangleright Given stabilized utility values $U_{i+1}(s) = U_i(s)$, the corresponding optimal policy π^* can be determined.
- ➤ Unfortunately, it is difficult to estimate how long the value iteration algorithm should be run to get an optimal policy.
- ➤ Alternatively, policies can be evaluated using **policy loss**, i.e., the difference of expected utility with respect to the optimal policy.

An optimal policy is reached long before utilities converge.

© 2004 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2004

Complex decisions

16

POLICY ITERATION

- ➤ The optimal policy is often not very sensitive to the utility values.
- \triangleright The basic idea in **policy iteration** is to choose an initial policy π_0 , calculate utilities using π_0 as policy and update π_0 (repeatedly).
- 1. **Policy evaluation**: the utilities of states are determined using π_i and the simplified Bellman update for j > 0:

$$U_{j+1}(s) = R(s) + \gamma \sum_{s'} T(s, \pi_i(s), s') U_j(s').$$

Another possibility is to solve utilities directly from the simplified Bellman equation by setting $U_{i+1}(s) = U_i(s)$.

2. **Policy improvement**: a new MEU policy π_{i+1} is calculated (until $\pi_{i+1} = \pi_i$) using the utility values based on π_i .

Example. The utilities of states (3,2) and (3,3) are solved as follows:

$$\begin{cases} u_{(3,2)} = -0.04 + 0.8u_{(3,3)} + 0.1u_{(3,2)} - 0.1 \\ u_{(3,3)} = -0.04 + 0.8 + 0.1u_{(3,3)} + 0.1u_{(3,2)} \\ -0.8u_{(3,3)} = -0.9u_{(3,2)} - 0.14 \\ 8.1u_{(3,3)} = 0.9u_{(3,2)} + 6.84 \\ \implies u_{(3,3)} = \frac{6.7}{7.3} \approx 0.918 \text{ and } u_{(3,2)} = \frac{0.8u_{(3,3)} - 0.14}{0.9} \approx 0.660. \end{cases}$$

© 2004 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2004

Complex decisions

18

DECISION-THEORETIC AGENT DESIGN

A comprehensive approach to agent design for partially observable, stochastic environments is based on the following elements:

- ➤ The transition and observation models are represented as a dynamic Bayesian network (DBN).
- This model is extended with decision and utility nodes, as in decision networks, to form a dynamic decision network (DDN).
- ➤ A filtering algorithm is used to incorporate each new percept and action, and to update the agent's estimate on the current state.
- ➤ Decisions are made by *projecting forward* possible action sequences and choosing the best one.

The generic structure of a dynamic decision network is as follows:

- \blacktriangleright The transition model $T(s_t, a, s')$ is the same as $P(\mathbf{X}_{t+1} \mid \mathbf{X}_t, A_t)$ where A_t denotes the action at time t.
- \blacktriangleright The observation model O(s,o), which defines the probability of perceiving the observation o in state s, is the same as $P(\mathbf{E}_t \mid \mathbf{X}_t)$.

© 2004 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2004

Complex decisions

20

SUMMARY

- ➤ A **optimal policy** associates an optimal decision with every state that the agent might reach.
- **Value iteration** and **policy iteration** are two methods for calculating optimal policies.
- ➤ Unbounded action sequences can be dealt with **discounting**.
- ➤ Dynamic Bayesian networks can handle sensing and updating over time, and provide a direct implementation of the update cvcle.
- **Dynamic decision networks** can solve sequential decision problems arising for agents in complex, uncertain domains.

QUESTIONS

- 1. Recall the belief network that you designed for representing the ball tracking mechanism of a soccer playing agent.
 - ➤ Is it possible to identify a state evolution model and a sensor model from your network?
 - ➤ If not, reconstruct the network by keeping these in mind.
- 2. Continue the analysis of soccer playing agents.
 - ➤ Can you identify other problems in this domain that can be considered as real sequential decision problems?
 - ➤ Try to formalize such a problem as a dynamic decision network.

© 2004 HUT / Laboratory for Theoretical Computer Science