## Agenttipohjaisen tietojenkäsittelyn perusteet Laskuharjoitus 4 Solutions

## 1. a) The costs of the tree routes are as follows:

| Route          | Time (min) | Cost (mk) |
|----------------|------------|-----------|
| $\overline{I}$ | 57         | 39        |
| II             | 33         | 26        |
| III            | 55         | 20        |

If the engineer salary a=40 mk, the cost function U(t,m)=m+at gives us the following values:

$$I: U(57, 39) = 39 + \frac{57}{60} \cdot 40 = 77$$

$$II: U(33, 26) = 26 + \frac{33}{60} \cdot 40 = 48$$

$$III: U(55, 20) = 20 + \frac{55}{60} \cdot 40 = 56.7$$

With given parameters the route II is the best.

We find the point where III is better than II by solving the following inequality:

$$\frac{33}{60}x + 26 \ge \frac{55}{60}x + 20$$
$$x \le 16.36,$$

so the engineer had to earn less than 16.36 mk/h for route III to be better.

The figure below gives the costs of different routes when a varies between 0–100.



We see that I is dominated by the two other routes so it can be left out of decision process.

b) When we use the cost function  $U(t_1, t_2, m) = a_1t_1 + a_2t_2 + m$ , where  $a_1 = 1.5a$  and  $a_2 = 0.5a$  the situation is as follows:

| Route          | Time $t_1$ (min) | Time $t_2$ (min) | Cost (mk) |
|----------------|------------------|------------------|-----------|
| $\overline{I}$ | 25               | 32               | 39        |
| II             | 12               | 21               | 26        |
| III            | 45               | 10               | 20        |

Thus, the costs of the routes are:

$$\begin{split} I:U(25,32,39) &= 39 + \frac{25}{60} \cdot 60 + \frac{32}{60} \cdot 20 = 74.7 \\ II:U(12,21,26) &= 26 + \frac{12}{60} \cdot 60 + \frac{21}{60} \cdot 20 = 45 \\ III:U(45,10,20) &= 20 + \frac{45}{60} \cdot 60 + \frac{10}{60} \cdot 20 = 74.375 \end{split}$$

Again, II was better than the others. The following figure shows how the costs change as function of salary:



In this interval none of the options dominates the other ones.

c) If the results of choices are not deterministic, we use the expected value E[U(X)] of the utility function as basis for the decisions. The probability distribution of the three different routes is:

| Route            | t  (min) | p(t) |
|------------------|----------|------|
| $\overline{I}$   | 57       | 0.75 |
|                  | 58       | 0.20 |
|                  | 62       | 0.05 |
| $\overline{II}$  | 33       | 0.30 |
|                  | 34       | 0.20 |
|                  | 43       | 0.20 |
|                  | 48       | 0.30 |
| $\overline{III}$ | 55       | 0.16 |
|                  | 56       | 0.19 |
|                  | 57       | 0.03 |
|                  | 60       | 0.17 |
|                  | 61       | 0.04 |
|                  | 65       | 0.17 |
|                  | 66       | 0.03 |
|                  | 70       | 0.17 |
|                  | 71       | 0.03 |
|                  | 75       | 0.01 |

This gives us the following expected values and costs:

| Reitti         | E(t) (min) | U(t,m) (mk) |
|----------------|------------|-------------|
| $\overline{I}$ | 57.45      | 77.3        |
| II             | 39.7       | 52.47       |
| III            | 61.6       | 61.06       |

Again, we should choose route II.

