A

A

T-79.230 / Spring 2002 Learning

LEARNING'

/

Outline

O General Model of Learning Agents

O Inductive Learning

O Learning Decision Trees

0 Using Information Theory

O Learning Logical Descriptions

O Learning Belief Networks

Based on the textbook by S. Russell & P. Norvig:

Artificial Intelligence, Modern Approach,

Chapters 18.1-5, 18.7, and 19.6

_ /

© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

/ GENERAL MODEL OF LEARNING AGENTSI \

O A learning agent consists of four conceptual components:

Performance standard

citic Sensors
|

feedback

changes
Learning Performance

element element
nowledge

juswuoliaug

learning
goals

Problem
generator

Agent Effectors

1. A performance element (a conventional agent) which is
responsible for choosing external actions.
2. A learnin8 €lement which aims to improve the agent.

3. A critic which evaluates the performance of the agent.

& 4. A problem generator which suggests new courses of action.

/

(© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

-~

A

Example. Consider dividing an automated taxi-driving agent into four
components mentioned above.

The design of the learning element if affected by four major choices:

w o Nno=

~

Desigh of the Learning EIementI

Which components of the performance element are improved.
What kind of internal representation is used for those components.
What kind of feedback is available to the agent.

What prior knowledge on the environment is available.

/

© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

A
\

Components of the performance eIementI

The components may include the following:
1. A direct mapping from the current state to actions.

. Means to infer relevant properties of the world from percepts.

2

3. Information about the way the world evolves.

4. Information about the possible outcomes of the agent's actions.
5

. Utility information indicating the desirability of
(performing particular actions in) particular world states.

6. Goals describing states that maximize the agent's utility.
Each of these can be learned — given appropriate feedback.

Various kinds of internal representations can be used for the

components: polynomials, logical rules, belief networks, etc.

/

© 2002 HUT / Laboratory for Theoretical Computer Science

A

A

T-79.230 / Spring 2002 Learning

a N
Available Feedback.

Different kinds of learning situations can be distinguished:

O Supervised learnin8: the outputs that a component generates for
particular inputs can be compared with the correct outputs
(which are provided by an external teacher).

0 Unsupervised learnin8: the correct outputs are not known.

Example. An unsupervised learner may learn to predict its future
percepts given its percept history so far.

O Reinforcement learning: the outputs get evaluated somehow
(for instance, the agent receives a reward or a punishment), but
the correct outputs remain unknown.

Any prior knowledge on the environment helps enormously in learning!

/

© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

4 N
INDUCTIVE LEARNING '

O In general, learning can be understood as a process of determining

a representation for some function f of interest.

O An example is a pair (z, f(x)) where z is the input and f(z) is
the output of the function f applied to z.
O The task of pure inductive inference (or induction) is:
Given a collection of examples of f, return a function h
(called a hypothesis) that approximates f.

O Typically, there are many hypotheses conforming to the examples.

O In incremental learning. the collection of examples grows
gradually, and the agent updates its hypothesis accordingly.

\ J

(© 2002 HUT / Laboratory for Theoretical Computer Science

A

A

T-79.230 / Spring 2002 Learning

O
O

O

_

Example. Consider a set of points (z,y) in zy-plane such that
y = f(z). The task is to find h(x) that fits the points well.

o] [o]

[o]
o}
[o]
o}

(€Y (b) (© (d)

As f is unknown, there are many choices for h, but without
further knowledge there is no way to prefer (b), (c), or (d).

Any preference for one hypothesis over another beyond mere
consistency with examples is called a bias.

All learning algorithms exhibit some sort of bias.

/

© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

-

A Reflex Agent Taught by a Teacher' \

The agent maintains a collection of pairs of percepts and actions:

global examples« {}

function REFLEX-PERFORMANCE-ELEMENT(percept) returnsan action

if (percept,a) in examplesthen return a
else

h « INDUCE(examples)

return h(percept)

procedur e REFLEX-L EARNING-ELEMENT(percept, action)
inputs: percept, feedback percept
action, feedback action

examples«+ examples U {(percept,action)}

There is no commitment to how the hypothesis is represented.

Currently, there exist algorithms (cf. INDUCE above) for learning
logical rules, nonlinear numerical functions, belief networks, etc.

There is a clear trade-off between expressiveness and efficiency. J

© 2002 HUT / Laboratory for Theoretical Computer Science

A

A

_

T-79.230 / Spring 2002 Learning

LEARNING DECISION TREES '

0 A decision tree is a representation of a function f from an
n-dimensional attribute space to the set { Yes, No}.

Thus f can be understood as a Boolean-valued function.
[DeCision trees are structured as follows:

1. Each internal node tests the value of an attribute and the
branches are labeled by the values of the attribute.

2. Leaf nodes contain the Yes/No answer for the goal predicate
the values of which are represented by the decision tree.

O Arbitrary Boolean functions can be represented as decision trees.

O Functions with larger range of outputs can also be represented.

~

/

© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

éxample. Consider the problem of deciding whether to wait for a table\

at a restaurant. The aim is to learn a decision tree for the goal
predicate WillWait using the following attributes:

1. Alternate: is there a suitable alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?

3. Fri/Sat: is it Friday or Saturday?

4. Hungry: are we hungry?

Patrons: the number of people (None, Some, Full) in the restaurant.

o o

Price: the price range of the restaurant ($, $$, $$8).

N

Raining: is it raining outside?
8. Reservation: has a reservation been made beforehand?

9. Type: the type (French, Italian, Thai, Burger) of the restaurant.

WaitEstimate: the €stimate in minutes (0-10, 10-30, 30-60, >60). /

© 2002 HUT / Laboratory for Theoretical Computer Science

10

A

A

T-79.230 / Spring 2002 Learning

/Example. Mr. Russell makes decisions for this domain as follows: \

Patrons?
None Some Full
[No] [Yes] [waitEstimate? |
>60 30-60 10-30 0-10
[No] [Alternate? | [Hungry?] [Yes]
No Yes No Yes
[Reservation? |[Fri/sat? | [Yes] [Alternate? |
No Yes No Yes No Yes
[Barz | [Yes][No] [Yes] [Yes] | Raining? |
No Yes No Yes
No Yes No Yes
Price and Type attributes are considered irrelevant.

2

/

© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

Expressiveness of Decision Trees'

O Paths of decision trees can be expressed as logical implications:
Vr(Patrons(r, Full) A WaitEstimate(r, 0-10) A Hungry(r)
— WillWait(r)).
O Full first order logic is not easily covered.
|:| Decision trees are effectively propositional.
[0 Any boolean function can be encoded as a decision tre, but such
a representation may require an exponential space.
Example. The sizes of decision trees for parity and majority

functions grow exponentially in the number of variables.

O There are 22" different Boolean functions (with n Boolean
K attributes). When n = 6, this number is about 1.8 x 101°.

~

/

© 2002 HUT / Laboratory for Theoretical Computer Science

11

12

A

A

T-79.230 / Spring 2002 Learning 13

/

O An example is described by a combination of values for the

Example. Consider the following set of positive and negative
examples for the goal predicate WillWait.

Inducing Decision Trees from Examples'

attributes and the corresponding value of the goal predicate.

Attributes Goal
Example
At | Bar | Fri | Hun| Pat |Price| Rain| Res | Type Est WiIWait

Xy Yes| No | No| Yes| Some| $88| No | Yes| French | 0-10 Yes
Xo Yes| No | No | Yes| Full $ | No| No| Thai 30-60 No
X3 No | Yes| No | No | Some $ No | No | Burger | 0-10 Yes
X Yes| No | Yes| Yes| Full $ | No| No| Thai 10-30 Yes
Xs Yes| No | Yes| No Full $8% | No | Yes| French >60 No
Xs No | Yes| No | Yes| Some| $$ | Yes| Yes| Italian | 0-10 Yes
X7 No | Yes| No | No | None $ | Yes| No | Burger [0-10 No
Xs No| No| No| Yes| Some| $$ | Yes| Yes| Thai 0-10 Yes
Xg No | Yes| Yes| No Full $ Yes | No | Burger >60 No
X1 Yes| Yes| Yes| Yes| Full $8% | No | Yes| lItalian | 10-30 No
X No| No| No| No| None| $ | No| No| Thai 0-10 No
X1z Yes| Yes| Yes| Yes| Full $ No | No | Burger | 30-60 Yes

The task is to construct a decision tree for WillWait using this

set of examples as a training set.

/

© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning 14

.

~

A trivial solution encodes each example as a path leading to a leaf:

1. Along the path, all the attributes are tested in turn.

2. The leaf node holds the correct classification for the example.

Such a decision tree produces correct classifications for the

examples in the training set, but does not cover other cases.

A central principle of inductive learning is called Ockham’s razor:
“The most likely hypothesis is the simplest one that is

consistent with all observations.”

It is intractable to find the smallest decision tree for a training set,
but relatively small ones can be found using a heuristics.

The basic idea is to test the most important attribute first, i.e.,
the one that best classifies examples in the training set.

/

© 2002 HUT / Laboratory for Theoretical Computer Science

A

A

T-79.230 / Spring 2002 Learning

/Example. In the restaurant example, the attribute Patrons yields a
much better classification than the attribute Type.

+: X1,X3,X4,X6,X8,X12

@ -1 X2,X5,X7,X9,X10,X11
None Some Full
+ +XLX3X6X8 + X4.X12
XX - - X2,X5,X9,X10
+ X1,X3,X4,X6,X8,X12
(b) —: X2,X5,X7,X9,X10,X11
French Ttalian Thai Burger
+X1 + X6 + X4,X8 +X3,X12
-iX5 —IX10 —X2X11 - X7.X9
+: X1,X3,X4,X6,X8,X12
© —1 X2,X5,X7,X9,X10,X11
None Some Full
+ +XLX3X6X8 + X4,X12
XX - - X2,X5,X9,X10
Y N
HXAX12 4
—X2X10 - X5,X9

_

~

/

© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

-

An Algorithm for Learning Decision Trees'

O The process can be formalized as a concrete learning algorithm:

function DECISION-TREE-LEARNING(examples, attributes, default) returns a decision tree
inputs: examples, set of examples
attributes, set of attributes
default, default value for the goal predicate

if examplesis empty then return default
elseif all examples have the same classification then return the classification
elseif attributesis empty then return MAJORITY-VALUE(examples)
else
best + CHOOSE-ATTRIBUTE(attributes, examples)
tree«+ anew decision tree with root test best
for each valuev; of best do
examples; « {elements of exampleswith best = v;}
subtree « DECISION-TREE-L EARNING(examples;, attributes — best,
MAJORITY-VALUE(examples))
add a branch to tree with label vi and subtree subtree
end
return tree

~

/

© 2002 HUT / Laboratory for Theoretical Computer Science

15

16

A

A

T-79.230 / Spring 2002 Learning

O The training set is split into smaller sets of examples that are
solved as recursive instances of the decision tree learning problem.
O The recursive problems fall into four different categories:

1. If there are both positive and negative examples, then one of
the best attributes is chosen to split the examples.

2. If all the remaining examples are positive (or all negative), then
the answer is Yes (or No).

3. If there are no examples left, the majority classification at the
node's parent is returned as a default value.

4. If there are no attributes left, but both positive and negative
examples, there is noise in the data or the set of attributes is
insufficient to fully determine the goal predicate.

O A way to handle the last category is to use a majority vote.

_ /

© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

/Example. The following tree is obtained for the earlier training set: \

Patrons?

Burger

Fri/Sat?

O The resulting decision tree is much simpler than the original tree
(which was actually used for generating the training set).

[J Despite simplicity, the decision tree produces a correct

classification for every example in the training set.

\ /

© 2002 HUT / Laboratory for Theoretical Computer Science

17

18

A

A

T-79.230 / Spring 2002 Learning

4 N

Assessing the Learning Element Performance'

O A learning algorithm is good if it produces hypotheses which yield
correct classifications for as many unseen examples as possible.
O A way to evaluate the performance of a learning algorithm is to

1. Collect a large set of examples and divide it into a training set
and a separate test set.

2. Apply the learning algorithm to the examples in the training
set in order to generate a hypothesis H.

3. Measure the percentage of examples in the test set that are
correctly classified by the hypothesis H.

4. Repeat steps 1-3 for random training sets of increasing size.

_ /

© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

o

The performance of a specific learning algorithm can be depicted\
as a learning curve that gives the percentage of correct

classifications on the test set as a function of the training set size.

Example. The learning curve below shows how the decision tree
learning algorithm performs in the restaurant example:

% correct on test set

04 L L L L
0 20 40 60 80 100
Training set size

\ J

© 2002 HUT / Laboratory for Theoretical Computer Science

19

20

"’

A

T-79.230 / Spring 2002 Learning

~

Case Study: Learning to FIyI

[DecCision tree learning has been applied to flying a CeSSna airplane
on a flight simulator [Sammut et al., 1992].

0 The data was generated by watching three skilled human pilots
performing an assigned flight plan 30 times each.

O In all, 90000 examples were obtained — each described by 20 state
variables and labelled by the action taken by the pilot.

0 The decision tree that resulted from these was converted into C
code and inserted to the flight simulator’s control loop.

O Surprisingly, the program was able to fly better than its teachers.

/

© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002

USING INFORMATION THEORYI

O A perfect attribute divides the set of examples into subsets in

Learning

~

which examples are all positive or all negative.

O One suitable measure for comparing attributes is the expected
amount of information (in the sense proposed by Shannon)
obtained by learning the exact values of attributes.

Example. Suppose you are going to bet 1€ on the flip of a coin.

1. If P(Heads) = 0.99, then EMV = 0.99 x 1€ — 0.01 x 1€ = 0.98€
and VPI(Heads) = 1€ — 0.98€ = 0.02€.

2. If P(Heads) = 0.5, then EMV = 0.5 x 1€ — 0.5 x 1€ = 0€ and
VPI(Heads) = 1€ — 0€ = 1€.

|:| The less you know, the more valuable the information.

\J J

© 2002 HUT / Laboratory for Theoretical Computer Science

21

22

T-79.230 / Spring 2002 Learning

A

Measuring Information Content'

O Information theory uses the same intuition, but it measures
information content in bits rather than value of information.

O In general one bit of information is enough to answer a yes/no
question about which one has no idea.

O In general, the information content I of the actual value of V is

I(P(v1),...,P(v,)) = Z —P(v;) log, P(v;) (bits).

=1
where P(v1),..., P(v,) are the probabilities for the possible

values vy, ..., v, of the variable V.

Example. The information content 1(0.5,0.5) = —0.5log, 0.5
—0.51log, 0.5 = 1 bits, but 7(0.99,0.01) =~ 0.08 bits.

~

/

© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

A

/ Information Gain I

O In case of decision trees, the information gain from getting to
know the exact value of a v-valued attribute A is given by
n
Gain(A4) = I(P ,) — Remainder(A)
p+n p+n
where the remaining information content

Remainder(A) = Z(
=1
and p (p;) and n (n;) are the numbers of positive and negative

pi tn;
p+n

Di n;)

x I(;)
pi +n; pi+ 1y

examples (that have the i*" value of A in common).

Example. More information is gained from Patrons than from Type:

Gain(Patrons) =1 — [£1(0,1) + 51(1,0) + SI(2,2)] = 0.
4

.

0
Gain(Type) =1 = [51(3,5) + 151(3,3) + (5, 3) + 13,)] = 0.

~

© 2002 HUT / Laboratory for Theoretical Computer Science

23

24

A

A

T-79.230 / Spring 2002 Learning 25

\J

Noise and Overfitting' \

Recall the possibility of noise in the training set (there are two
examples with identical attribute values, but classifications differ).

Overfitting means that a (decision tree) learning algorithm forms
a consistent hypothesis using irrelevant attributes for classification
even when relevant attributes are missing.

The information gain is close to zero for irrelevant attributes.

The relevance of attributes can be tested: the total deviation

D= Z;’:l((m;lﬁi) + (m;l:u))

where p; = p x p;')izi and fi; = n X % distributes according to

the x? distribution with v — 1 degrees of freedom.

DeCision trees can be pruned by neglecting irrelevant attributes.J

(© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning 26

-

1

.

In order to extend decision tree induction to a wider variety of
problems, several problems have to be addressed.

. Missing values: an example X lacking the value of an attribute

~

Broadening the Applicability of Decision Trees'

A is given the majority classification among those obtained by
assuming that X has each value of A in turn.

Multivalued attributes: when an attribute has a large number of
possible values (e.g. RestaurantName), the information gain gives
a misleading indication on the usefulness of the attribute.

A solution is to use gain ratio instead of plain information gain.

Continuous-valued attributes (e.g. Price) are not well suited for
decision-tree learning, and have to be discretized somehow.

(© 2002 HUT / Laboratory for Theoretical Computer Science

A

A

T-79.230 / Spring 2002 Learning

-~

LEARNINGI
GENERAL LOGICAL DESCRIPTIONS '

O Inductive learning can be viewed as a process of searching for a
good hypothesis in a large hypothesis space which is determined
by the representation language chosen for the task.

O In the sequel, the aim is to describe the interconnections of
examples, hypotheses, and the goal in logical terms.

O This helps understanding inductive learning in more
general /complex forms compared to learning decision trees.

/

(© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

/ Hypotheses I

0 The goal is a predicate Q(z) for which candidate definitions
C;(x) are formed as hypotheses H; = Vz(Q(z) +» Ci(z)).

Example. For the decision tree learned in the restaurant example:

~

Vr(WillWait(r) <> Patrons(r, Some)V
(Patrons(r, Full) A —Hungry(r) A Type(r, French))V
(Patrons(r, Full) A =Hungry(r) A Type(r, Thai) A Fri/Sat(r))V
(Patrons(r, Full) A =Hungry(r) A Type(r, Burger)))
[0 The extension of a hypothesis H; = Vz(Q(z) <> Ci(z)) is the set
of examples X for which Q(X) evaluates to true.
|:| Logically equivalent hypotheses have equal extensions.

00 The hypothesis space {Hy, ..., H,} of a learning algorithm is
denoted by H and it is usually believed that one of the hypotheses

in the space H is correct, i.e., H; V...V H, is true. /

© 2002 HUT / Laboratory for Theoretical Computer Science

27

28

A

A

/

T-79.230 / Spring 2002 Learning

Classifying Examples with Hypotheses'

O Given a hypothesis H; = Vz(Q(x) <> Ci(x)), an example X is
positive/negative if Q(X)/—Q(X) evaluates to true.

Example. The first example X; in the training set of the restaurant
example is a positive one, as WillWait(X;) evaluates to true.

O An example X corresponds to a conjunction of literals which
define the values of attributes and the goal predicate for X.

O A false positive/negative example X for a hypothesis
H, =Vz(Q(z) <> Ci(z)) gets an incorrect classification by H;.
I:I X (as a conjunction of literals) is inconsistent with H;.

O Inductive learning can be understood as a process of gradually
eliminating hypotheses that are inconsistent with examples.

(© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

0 The idea is to maintain a single hypothesis H, and to adjust it if
new false positive/negative examples w.r.t. H are encountered.

O The current hypothesis H is illustrated in the figure (a) below.

O A false negative example (b) can be removed by a generalization
(c) that extends the extension of the current hypothesis H;.

O A false positive example (d) can be removed by a specialization
(e) that narrows the extension of the current hypothesis H;.

+ - + - + - + +
+ + + + +
+ - + - ki - _ |+ - + -
+ + + + +
: o = oAl d0=
+ o+ | - + + |- + o+ + + —-

@ - (b) © G @

© 2002 HUT / Laboratory for Theoretical Computer Science

~

/

Current-Best-Hypothesis Search I \

29

30

A

A

.

T-79.230 / Spring 2002 Learning

/ Skeletal Algorithm I \

Current-best-hypothesis search is captured by the following algorithm:

function CURRENT-BEST-LEARNING(examples) returns a hypothesis

H + any hypothesis consistent with the first example in examples
for each remaining example in examples do
if eisfalse positive for H then
H + choose a specialization of H consistent with examples
elseif eisfalse negativefor H then
H «+ choose a generalization of H consistent with examples
if no consistent specialization/generalization can be found then fail
end
return H

[0 Generalizations and specializations imply logical relationships:
E.g., if H =Vz(Q(z) <> C1(x)) is a generalization of
Hy; =Vz(Q(z) <+ Co(x)), then Yz (Ca(z) — C1(z)) holds.

kD Note that Hs is a specialization of H; in the setting above. /

(© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

/Example. A way to generalize is to drop conditions from definitions.\

For instance, C1(z) <+ Patrons(z, Some) generalizes the definition
Ci(x) <» Alternate(x) A Patrons(z, Some).

Example. Hypotheses are formed in the restaurant example as follows:

H,y: Vz(WillWait(x) <> Alternate(x))

Hy: Yo (WillWait(z) <> Alternate(x) A Patrons(z, Some))

Hs: Vx(WillWait(x) <> Patrons(z, Some))

Hy: Ve(WillWait(z) < Patrons(z, Some) V (Patrons(z, Pull) A Fri/Sat(z)))
There are also other hypotheses conforming to the first four examples:
Hj: Va(WillWait(x) <» — WaitEstimate(z, 30-60))

HY: Vz(WillWait(z) <> Patrons(z, Some)V
(Patrons(z, Full) AN WaitEstimate(z, 10-30)))

© 2002 HUT / Laboratory for Theoretical Computer Science

31

32

A

A

T-79.230 / Spring 2002 Learning

Least-Commitment Search I \

The original hypothesis space can be viewed as a disjunction

Hyv.V H

Hypotheses which are consistent with all examples encountered so
far form a set of hypotheses called the version space V.

Version space is shrunk by the candidate elimination algorithm:

function VERSION-SPACE-L EARNING(examples) retur nsaversion space
local variables: V, the version space: the set of all hypotheses

V « the set of all hypotheses
for each example ein examplesdo
if Visnot empty then V « VERSION-SPACE-UPDATE(V, €)
end
return vV

function VERSION-SPACE-UPDATE(V, €) retur ns an updated version space
V{h € V: hisconsistent with e}

© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

.

Boundary Sets'

The algorithm finds a subset of the version space V' that is
consistent with all examples in an incremental way.

Candidate elimination is an example of a least-commitment
algorithm, as no arbitrary choices are made among hypotheses.

Since the hypothesis space V is possibly enormous, it cannot be
represented directly as a set of hypotheses or a disjunction.

- Sn}
,Gm} (G-set) and a partial ordering among

The problem can be alleviated by boundary sets {51, ..
(S-set) and {G4,. ..
hypotheses induced by specialization/generalization.

Any hypothesis H between a most specific boundary S; and a

most general boundary G is consistent with the examples seen.

© 2002 HUT / Laboratory for Theoretical Computer Science

33

34

A

A

T-79.230 / Spring 2002 Learning

/"

~

Boundary sets for the version space are illustrated below:

Thisregion all inconsistent

More specific + + 4

thisregion all inconsistent

Initially, the S-set contains a single hypothesis Vz(Q(z) <+ False)
while the G-set contains Vz(Q(z) <> True) only.

Upon a false negative/positive example, a most specific boundary
S is replaced by all its immediate generalizations / deleted.

Upon a false positive/negative example, a most general boundary

G is replaced by all its immediate specializations / deleted.

/

© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

ﬁhese operations on S-sets and G-sets are continued until:

1.
2.

~

There is exactly one hypothesis left in the version space.

The version space collapses (i.e., the S-set or G-set becomes
empty): there are no consistent hypotheses for the training set.

. We run out of examples with several hypotheses remaining in the

version space: a solution is to take the majority vote.

Discussion

If the domain contains noise or insufficient attributes for exact
classification, the version space will always collapse.

If unlimited disjunction is allowed when hypotheses are formed,
the S-set/G-set will always contain a single boundary.

A solution is to allow only limited forms of disjunction.

/

© 2002 HUT / Laboratory for Theoretical Computer Science

35

36

A

A

T-79.230 / Spring 2002 Learning

~

BAYESIAN LEARNINGI

The aim is to make a prediction concerning an unknown quantity
X given some data D and hypotheses Hq, Ho,

Agsuming that each H; specifies a complete distribution for X,
full Bayesian learnin8 is characterized by

P(X |D)=>,P(X | H:)P(H; | D).
In most cases, computing P(H; | D) is intractable.

A common approximation is to use maximum a posteriori (MAP)
hypothesis Hyiap — a hypothesis H; that maximizes P(H; | D):

/

(© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

.

~

Since P(H; | D) = ZLIZIEI) and P(D) is fixed, it is sufficient

to maximize P(D | H;)P(H;) in order to determine Hyap.

This maximization process involves determining the prior
probabilities P(H;) for the possible hypotheses H;.

The relation of MAP hypotheses to preferring simpler hypotheses
(like Ockham's razor principle) is not yet fully understood.

The only reasonable policy is to assign prior probabilities P(H;)
based on some simplicity measure on hypotheses.

In some cases, the prior probabilities P(H;) can be assumed to be
uniformly distributed.

Then maximizing P(D | H;) produces a maximum-likelihocod
(ML) hypothesis Hyi, — a special case of Hyap-

/

© 2002 HUT / Laboratory for Theoretical Computer Science

37

38

A

A

T-79.230 / Spring 2002 Learning

-~

Belief Network Learning Problems'

The learning problem for belief networks cOmes in several varieties:

1. Known structure, fully ocbservable: only CPTs are learned and
the statistics of the set of examples can be used.

2. Unknown structure, fully observable: this involves heuristic
search through the space of structures — guided by the ability of
modeling data correctly (MAP or ML probability value).

4. Unknown structure, hidden variables: no good/general
algorithms are known for learning in this setting.

~

3. Known structure, hidden variables: analogy to neural networks.

/

© 2002 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2002 Learning

SUMMARY

O Learning is essential for dealing with unknown environments.

O Learning may take several forms depending on the chosen
representation, available feedback, and prior knowledge.

O The aim of inductive learning is to learn a function from
examples of its inputs and outputs.

0 Ockham’s razor principle suggests choosing the simplest
hypothesis that matches the examples observed.

their prediction accuracy as a function of the training set size.

of probabilistic functions, particularly belief networks.

.

~

O The performance of inductive learning algorithms is measured by

[Bayesian learning methods can be used to learn representations

/

(© 2002 HUT / Laboratory for Theoretical Computer Science

39

40

