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MAKING COMPLEX DECISIONS I

Outline

O Sequential Decision Problems

O Value Iteration

O Policy lteration

0 Decision-Theoretic Agent Design
O Dynamic Belief/Decision Networks

Based on the textbook by S. Russell & P. Norvig:

Artificial Intelligeec A Modern ApProach, Gapter 17
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/ SEQUENTIAL DECISICON PROBLEMSI

Example. Consider an agent situated in the following environment:

3
i .
1 START

1 2 3 4

0 The agent may perform actions North, South, East, and West in

order to move between squares (or states) (1,1), ..., (4,3).
O Moving towards a wall results in no change in position.

O The operation of the agent stops and it receives a reward/

K punishment if it reaches a square marked with +1/—1.

~
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Transitio" Model I

O In a deterministic setting the outcomes of actions are known, and

the agent may plan a sequence of actions which moves it to (4, 3).
O This becomes impossible if actions are nondeterministic/unreliable.

[ A transition model assigns a probability M} to the event that
the agent reaches state j it performs action a in state 1.

Example. (Continued) Each one of the four actions North, South,
East, and West moves the agent

1. to the intended direction d with a probability of 0.8, and

2. at right angles to the direction d with probabilities 0.1 and 0.1.

\_ /
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/Example. If an action sequence S = [North,EaSt] is performed in \
state (3,2) the agent reaches states with folowing probabilities:

Pay=01x0.1= 0.01
P32 = 0.8x0.1 = 0.08
P33 = 0.8 x 0.1+ 0.1x 0.1 =0.09
Prag) = 0.140.1x0.8= 0.18
Prag) = 0.8x0.8= 0.64

1.00

These are easily inspected from a (partial) reachability graph:
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Assigning Utilities to PIans?I

Utility function U is based on a sequence of states
(an environment history) rather than a single state.

Example. In our example, the utility is defined as the value of the
terminal state (41 or —1) minus 5z of the length of the sequence.

Considering sequences of actions as long actions implies
committing to an entire sequence of actions before executing it.

In practice, the agent should be able to choose a new action in
each state given any additional information provided by sensors.

In stochastic environments, plans have to be conditional and it
may be impossible to set a limit for lengths of conditional plans.

/
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We concentrate on accessible environments where the agent's
percepts are always sufficient for determining the state it is in.

A policy is a complete mapping from states to actions.

Given a policy, it is possible to calculate the expected utility of the
possible environment histories generated by that policy.

It is non-trivial to compute an optimal policy that results in the
highest expected utility (recall the MEU principle).

If the agents knows an optimal policy, then it can cho©S€ an
action in a deterministic fashion in every state.

/
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/Example. An optimal policy for the square world appears on the Ieft.\

Sl = | 3 | o812 | oses | 0018

2 ? . f 2 - . -

1 ? - - - 1 0.705 0.655 0.611 0.388
1 2 3 4 1 2 3 4

The expected utilities for individual states are given on the right.
[0 The policy is very conservative (tries to avoid punishment).

O If the cost of moves is increased, then the optimal policy becomes
different for the state (3,1): West is replaced by No'th.

O If the cost of moves is decreased to then West is choSen

instead of North in state (3,2).

\_ /
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Markov Decision ProHe™s I

O The problem of calculating an optimal policy in an accessible,

stochastic environment with a known transition model is called a
Markov decision problem (MDP).

O It is said that the Markov property holds if the transition
probabilities depend only on the state (not on previous history).

O In the sequel, we will study two basic techniques for solving
MDPs, namely value iteration and policy iteration.

O In an inaccessible environment, the corresponding problem is
called a partially observable MDP (or POMDP).

O Solving POMDPs is much more difficult than solving MDPs.

\ J
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VALUE ITERATION I

In value iteration, the idea is to compute the utility U(s) for
each state s and to use these utilities for selecting optimal actions.

It is difficult to determine U(s) because of uncertain actions.

Let H(s,p) denote the history tree which results when — starting
from a state s — actions are taken according to a policy p.

Given a transition model M, the expected utility of a state s is
U(s)= EU(H(s,policy*) | M)
= > P(H(s,policy*) | M)Un(H(s, policy*))

where policy* is an optimal policy defined by M and the utility
function Uy, on state histories.

/
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How to Derive an Optimal PoIicy?I \

It is required that the utility function Uy on histories is separable:

Un([so, -, 8n]) = f(s0,Un([s1,- .-

The simplest form of a separable utility function is additive:
Un([sq, $1,---,8n)) = R(sa) + Un([s1,-- -, 8n])

where R is a reward function on individual states s.

,8n])) for some f.

Given an additive utility function Uy, an optimal policy policy* in
state ¢ can be defined by the standard MEU principle:

policy* (i) = arg max > MEU(3).

Similarly, the utility of a state can be expressed as folows:

U(t) = R(3) + mgxzj MZU(H).

/
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Dynamic Programming'

Dynamic programming involves an n-step decision problem where
the terminal states reached after n steps have known utilities.

U, Y12 U(1L3) Y1) Uz2) U23) UG UE2) UE3)
The expected utilities of other states can be computed backwards

(layer by layer): n — 1P layer, n — 2" layer, etc.

In this fashion, the time complexity of computing utilities is of
O(n|A||S|) where |S| is the number of reachable states.

Unfortunately, the dynamic programming approach is no longer

applicable if environment histories are of unbounded length. /
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Value lteratiol Algorithml \

There is an iterative procedure that approximates the utilities of
states to any degree of accuracy.

The next estimate U4 1(4) is based on the old utility estimates of
the neighboring states: Uy41(i) = R(i) + maxq Y_; MU (5).

There is no bound on the length of actions sequences.

function VALUE-ITERATION(M, R) returnsauutility function
inputs: M, atransition model
R, areward function on states
local variables: U, utility function, initially identical to R
U’, utility function, initially identical to R

repeat
U«
for each statei do
U'li] « RIi] + maxa 37, M U[]]
end
until CLOSE-ENOUGH(U, U")
return U

© 2003 HUT / Laboratory for Theoretical Computer Science
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Convergence I \

As t grows, the utility values will converge to stable values given
certain conditions on the environment.

Given a stabilized utility function, the corresponding optimal
policy [shown by Bellman and Dreyfus, 1962] is easy to compute.

Utility estimates

-05

-1 42 A

0 5 10 15 20 25 30
Number of iterations

/
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Unfortunately, it is difficult to estimate how long the value
iteration algorithm should be run to get an optimal policy.

The progress of value iteration can be measured using root mean
square error (RMS error) if the correct values are known.

Alternatively, policies can be evaluated using policy loss, i.e., the
difference of expected utility with respect to the optimal policy.

1 1

0.8 0.8

g os 8 os
9 g

Z 04 g o4

02 02

0 0

0 5 10 15 20 0 5 10 15 20

Number of iterations Number of iterations

An optimal policy is reached long before utilities converge.

/
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POLICY ITERATION I

0 The optimal policy is often not very sensitive to the utility values.

~

0 The basic idea in policy iteration is to cho©5¢ 2@ policy p,
calculate utilities using p as policy, and update p (repeatedly).

00 The value determination (utilities) is simpler given a policy p:

Ue1(3) = RG) + 32, MEDU()).

|:| A modified value iteration algorithm can be used.
O Unfortunately, value iteration may converge very slowly.
O Another approach is to solve utilities directly using equations
U(i) = R(i) + 3, ME U ()
that characterize stabilized utility values (Vi: Ugy1(4)

= U(i))-
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/Example. The utilities of states (3,2) and (3, 3) are solved as folows:\

U(3’2) =—-0.04+ 0.8”(3,3) + 0.1”(3,2) —0.1

u(z,3) = —0.04 + 0.8 + 0.1u(g 3 + 0.1us 2)
—O.SU(3,3) = —0.9u(3,2) —-0.14
=
8. 1U( 3) = 0.9“(3,2) +6.84
—  ues = %% ~0.918 and ugs g) = @001 (.660.
3 [ — — 3 | os12 | oges | 0918
2 f . ? 2 | o762 . 0.660
1 ? - - - 1 0.705 0.655 0.611 0.388
1 2 3 4 1 2 3 4

/

© 2003 HUT / Laboratory for Theoretical Computer Science

15

16



A

A

T-79.230 / Spring 2003 Complex decisions

/

~

O Once the utilities of all states are known, it is straightforward to

update the current policy using the MEU principle.

function PoLicy-ITERATION(M, R) returnsa policy
inputs: M, atransition model
R, areward function on states
local variables: U, autility function, initially identical to R
P, apolicy, initially optimal with respect to U

repeat
U < VALUE-DETERMINATION(P, U, M, R)
unchanged? < true
for each statei do
if maxa > MEU[] > 3 M U[j] then

Pli] ej argmaxa y I\I/Iﬁ U[j]

unchanged? faljse
end
until unchanged?
return P

/
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How Immortal Agents Decide What to Do?'

The total reward obtained by a policy can easily be unbounded if
the lifetime of an agent is not limited.

In discounting, rewards received in the future are considered less
valuable than rewards received in the current time step.

H) = Z;.i1 Y'R;
. (bounded by R) in a history H converges.

Given a discount factor 0 < v < 1, the sum U(
of rewards Ry, Ry, ..

Discounting conforms to a preference-independence assumption
called stationarity: if Ry = S; holds for two reward sequences
Ry, R5,...and 51,5, ..
preference ordered in the same way as R, R3,..

., then these sequences should be

.and S3,S3,. ...

An optimal policy yields a constant system gain in the long run.
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DECISION-THEORETIC AGENT DESIGNI

O Recall the schematic design of decision theoretic agents
performing decision cycles repeatedly:

~

function DECISION-THEORETIC-AGENT( percept) returnsaction

calculate updated probabilities for current state based on

available evidenceincluding current percept and previous action
calculate outcome probabilities for actions

given action descriptions and probabilities of current states
select action with highest expected utility

given probabilities of outcomesand utility information
return action

0 The components of the cycle are refined gradually in the sequel.

O We begin with the problem of determining the current state.

/
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Determining the Current State of the WorIdI

O In general, it is assumed that a set of state variables X;
(indexed by time t) refers to the current state of the world.

O Given the percept history Eq, ..., E; and the previous actions

Aq,...,A;_1, we are interested in the probability distribution
Bel(X;) = P(X,[E1, ..., By, A, ..., Ay 1),

O The direct evaluation of Bel(X;) is out of the question, as it
requires conditioning on many variables.

0 Conditional independence statements can be introduced in order
to simplify the expression for Bel(X;).

.

~

/
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Simplifying Assumptio"sl

O Assuming the Markov property, we obtain
P(Xt | Xl’ o '7Xt—laA]7 ey At—]) == P(Xt ‘ Xt—]aAt—])-

4 N

0 The Markov property can be established by introducing state
variables that record relevant information from percepts.

Example. If the robot is battery-powered, then the state variable
BatteryLevel; is needed to restore the Markov property.

O Percepts are causally determined by the state of the world:
P(Et‘xla R Xt;Ala s aAtfla Ela s aEtfl) = P(Et‘Xt)

0 The action taken depends only on the percepts received to date:

P(Ai_1|A1,. .., A2, E1,.. . Ei1) =P(A; 1 |Eq,..., E¢_1).

/
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Calculating the State Estimate Bel(X;)

0 The calculation takes place in two phases:

1. Prediction phase: the prior probability distribution EZZ(Xt)
based on the previous state antow actions affect states:

D OP(Xy [ X1 =x¢-1, A1) Bel(Xio1 = X4 1).

Xt—1
2. Estimation phase: the effect of the most recent percept E; is
incorporated to the distribution Bel(X;) by Bayesian updating:

Bel(X;) = aP(E, | X;)Bel(X,)

where « is a normalization constant.

0 The equations for Bel and Bel form a generalization of

.

Kalman filtering — a technique of classical control theory.

/
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The Complete Decisiof-The®retic e

O The remaining steps of the decision cycle are straightforward.

~

function DECISION-THEORETIC-AGENT(E;) returnsan action
inputs: E;, the percept at time t
static: BN, abelief network with nodes X
Bel(X), avector of probabilities, updated over time

Bel(Xy) ¢ Y., POt ] Xio1=xXi-1, Amg) Bel(Xi—1=Xi-1)
Bel(X1) ¢ o P(E¢ | X 1) Bei(Xy)

action < argmaxa, »_y, [ Bel(Xt=xt) Zx,ﬂ P(Xt1 = Xer1 | Xe=Xt, Ar) U(Xee1)

return action

00 The sensor model P(E; | X;) describes how the environment
generates the sensor data.

O The action model P(X;|X;_1, A;—1) gives the effects of action

S.

/
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Sensing in Uncertain Wods I

O A sensor model is stationary if it holds for all ¢ that
P(E; | X) =P(E | X).
|:| A fixed model P(E | X) can be used at each time step.

O All variables affecting the sensors have to be included in X.

O A sensor model is easily implemented as a conditional probability
table in a belief network (the figure on the left hand side):

NN

Temperature

Temperature
Reading

@ (b)

Pressure
Reading,

~

© 2003 HUT / Laboratory for Theoretical Computer Science

23

24



A

A

T-79.230 / Spring 2003 Complex decisions

/D The values of sensors are causally related to the state of the worl.\
O A perfect sensor corresponds to a purely deterministic CPT.

0 Possible noise and errors in the sensor are taken into account in
the probabilities of incorrect readings.

Example. In the burglar-alarm example, both JohnCalls and
MaryCalls can be viewed as sensors for the Alarm state variable.

O Typically, each sensor only measures some small aspects of the
total state (as illustrated in the figure on the right hand side).

0 Decomposing the overall sensor model into several components
may reduce the size of the CPTs required.

Example. Measuring Pressure and Temperature with sensors that
measure Pressure/ Temperature and Pressure x Temperature leads to

Qmplicated sensor models that depend on both state variables.

/
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/ Sensor Fusiol I \

0 There are often several sensors measuring the same state variable.

Temperature

Reading Reading
0 The sensor values are conditionally independent of each other,

given the actual value of the state variable.

O Sensor fusion or data fusion is about interpreting and putting
together perceptual information from multiple sensors.

Example. If the readings from gauges are 13.6°K (+0.5°K) and

<4.4°K(i0.5°K), the temperature is between 13.9°K and 14.1°K. /
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O It may be difficult to detect a sensor failure.

0 To handle sensor failures in the first pl§c the possibility of failure

[0 Sensor fusion may discount the readings of a failed sensor.

O One possibility is to add a detailed sensor failure model:

~

Sensor FaiIuresI

haS to be taken into account in the sensor model.

—_——

- N
( Position )

Lane
Position
- \ Sensor P

Sensor SN~

Accuracy
Sensor
Failure

/
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DYNAMIC BELIEF NETWORKS I

A dynamic belief network (DBN) represents how the state of
the environment evolves over time.

In analogy to sensor models, a stationarity assumption is made:
the distribution P(X;|X¢_1, A;_1) is the same for all ¢.

Moreover, the agent is assumed to be passively monitoring and
predicting a changing environment (i.e., it performs no actions).

A state evolution model where a sequence of X; values is based
on a fixed distribution P(X; | X;_1) is called a Markov chain.

DBNs will be generalized for the decision of actions later on.

/
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/ Structure of Dynamic Belief Networks' \

0 For each time step ¢, there is one node for each state variable X;
and sensor variable Y; — including appropriate interconnections.

STATE EVOLUTION MODEL

D D D

[
//
Percept.t-2 Percept.t-1 Percept.t ) - (Percept.t+1 Percept.t+2
//
7
SENSOR MODEL

0 The task is to calculate the probability distribution for State,,
given the evidence for ..., Percept,_,, Percept,.

O Probabilistic projection means estimating how the state of the

\ environment (i.e., States;,, with n > 0) evolves in the future. J
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Prediction and Estimatiol with Belie etworks.

O The prediction and estimation phaS€s of the refined decision cycle
can be implemented as operations on belief networks.

O It is sufficient to consider two time steps ¢ and ¢ — 1 (alsO called
the slices of the network):

(a) Prediction: using Bel(X; 1) calculate the prior distribution
Bel(X,) = Yx, , P(X¢ | Xi1 = x1) Bel(Xem1 = X-1).

(b) Rollup: remove the slice for ¢ — 1 from the network and add
the prior probability tables (based on Bel(X,)) for X,.

(c) Estimation: add the new percept E;, calculate Bel(X;) by
updating the network, and add the slice for ¢ + 1.

0 After these three steps, the network is ready for the next cycle.

\ J
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/D Let us illustrate the three steps for prediction and estimation: \
—
]
]
(a) Prediction o .

Percept.t-1 Percept.t

(b) Rollup

Percept.t

(c) Estimation

Percept.t Percept.t+1

 ZOI0EUT0:0

O Moreover, probabilistic projection is possible by adding the

k respective slices (but without percept nodes) for future time steps/
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Gxample. Let us extend the sensor failure model presented earlier by\

adding state evolution models for the state variables Weather,
Terrain, SensorFailure and LanePosition:

Lane Lane
Position.t Position.t+1
Position
Sensor.t

Position
Sensor.t+1

Sensor
Accuracy

A+l
Sensor Sensor
Failure.t Failure.t+1

O The model for the variable SensorFailure determines that the

Sensor
Accuracy
t

k sensor usually stays broken once it gets broken.

/
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DYNAMIC DECISIOCN NETWORKS

Any dynamic belief network can be converted into a dynamic
decision network by adding utility nodes and decision nodes:

o
The goal is to calculate the value of D; by the MEU principle.

The utility of a decision sequence d is a weighted sum of utilities
associated with each possible percept sequence given d.

The probabilities of percept sequences given d are used as weights.

Dynamic decision networks solve POMDPs only approximately.

/
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DDNs provide solutions to many problems arising in Al systems:

Discussiol

Uncertainty is handled correctly, and sometimes efficiently.
Continuous streams of sensor input can be dealt with.
Unexpected events are supported, since fixed plans are not used.
Noisy and failing sensors can be modeled.

The relevance of information can be estimated before acquisition.

Relatively large state spaces can be handled if states can be
represented by state variables with sparse connections.

There are techniques for approximative reasoning.

/
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SUMMARY

A optimal policy associates an optimal decision with every state
that the agent might reach.

Value iteration and policy iteration are two methods for
calculating optimal policies.

Unbounded action sequences can be dealt with discounting.

Dynamic belief networks can handle sensing and updating over
time, and provide a direct implementation of the update cycle.

Dynamic decision networks can solve sequential decision
problems arising for agents in complex, uncertain domains.

/
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. Recall the belief network that you designed for representing the

. Continue the analysis of soccer playing agents.

~

QUESTIONSI

ball tracking mechanism of a soccer playing agent.

O s it possible to identify a state evolution model and a sensor
model from your network?

O If not, reconstruct the network by keeping these in mind.

O Can you identify other problems in this domain that can be
considered as real sequential decision problems?

O Try to formalize such a problem as a dynamic decision network.

/
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