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Example. Consider a network based on five Boolean random variables:

BELIEF NETWORKS I 1. Burglary = “a burglar enters our home”.

2. Earthquake = “an earthquake occurs”.

A

Outli
uHine 3. Alarm = “our burglar alarm goes off”.

O Belief networks: syntax and semantics The alarm is fairly reliable at detecting a burglary, but may

O Inference in belief networks occasionally respond to minor earthquakes.

0 Multiply connected belief networks 4. JohnCals = “Our neighbor John calls and reports an alarm.

He always calls when he hears the alarm, but sometimes confuses

O Other approaches to uncertain reasoning telephone ringing with the alarm.

Based on the textbook by S. Russell & P. Norvig:

5. MaryCalls = "Our neighbor Mary calls and reports an alarm *.
Artificial Intelliger; A Modern Approach, Chapter 15 She likes loud music and sometimes misses the alarm altogether.

Shorthands B, E, A, J, and M are also introduced for these variables.

\_ / \_ /
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/ BELIEF NETWORKS: SYNTAXI \
00 The probability distributions P(X | Parents(X)) associated with

Definition. A belief network is a directed acyclic graph (DAG) variables X are given as conditional probability tables (CPTs).
G=({X1,...,X,},E) where E C {Xy,...,X,}? and

1. nodes X1,..., X, are random variables, Burglary E) Earthquake PE)
.002
.001

2. an arc (X,Y) € E of G represents a direct influence relationship
between the variables X and Y, and

/D The relationships of the variables are given as a belief network. \

A

B E| PA)
3. each node X is assigned a completely specified probability TIl e
distribution P (X |Parents(X)) where P T2

Parents(X) = {Y | (Y, X) € E}.

[0 Belief networks are also called Bayesian networks, probabilistic

P
networks, causal networks or knowledge maps. /; _9(0) AT PM)
1E ik
KD A compact specification of the joint distribution P(X7, ..., Xn)/ k J
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THE SEMANTICS OF BELIEF NETWORKSI

O A belief network for the random variables X1,..., X, is a
representation of the joint probability distribution P(X7,..., X,).

~

O In the sequel, a shorthand z; is used for the atomic event X; = x;.
O Arrows encode conditional independence statements and therefore
the probabilities of atomic events are determined by
P(z1,...,2n) =[]}, P(z; | Parents(z;))
where Parents(z;) refers to the assignments of X; € Parents(X,).
Example. Let us compute the probability of JAM AAA-BA-E:
P(JAMNANAAN—-BA-E)
= P(J|A)P(M|A)P(A|I-BA—-E)P(—E)P(—-B)

= 0.9 x0.7 x 0.001 x 0.998 x 0.999 = 0.00063

/
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Definition. Let P(1)) > 0. Sentences ¢; and ¢- are conditionally
independent given ¢ <= P(¢1 A ¢2 | ) = P(¢1 | ¥)P(¢2 | ).

Proposition. If P(¢)) > 0, P(¢1 A¢) > 0, and P(¢2 A1) > 0, then
¢1 and ¢ are conditionally independent given ¢ <=

P(¢1 | d2 Ap) = P(é1 | ) and P2 | 1 A9p) = P(é2 | 9) hold.
Proof. For the former equation, we note that

P(¢1 A g2 | ) = P(¢1 | ¢)P(d2 | ¥)

P(¢1Ag2nY) _ P($1AY)  P(d2/)
P(¥) P(¢) P(¥)

P(p1 A g2 ANP)P() = P(¢1 AY)P(d2 A )

P(g1 | 6o ) = BEsderi) — ZEil) — P(gy | ).

Belief networks

111

.
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Belief networks

A method for constructing belief networks' \

O In a belief network G = ({X1,...,X,}, E), a node X; # X, is a
predecessor of X; <= there are nodes Y7, ...,Y,, such that
Y: :Xj, Y, = X;, and V] S {1,...,m— 1} <}/},}fj+1> € FE.

1 Because G is a DAG, we may assume that the nodes X,..., X,

are ordered so that the predecessors of X; are among
Xi1,...,X;—1. Thus also Parents(X;) C {X1,...,X;-1}.

O By the definition of conditional probability, we have that

P(xlv ):
P(z, | Tn— 1,---,$1)P($n—1,---,$1) =
P(zy | Tn—1,..,21)P(Tpn-1 | Tn-2,...,21) - P(x2 | 1)P(21) =

H?:1P($i | mi,l,...,:cl).

\_ /
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/D A belief network is a correct representation if each variable X is \
conditionally independent of its predecessors Y given Parents(X).

O Under the assumptions on conditional independence and node
ordering, it can be established that

P(XZ | Xifl, - -7X1) = P(XZ | Parcnts(X,-)). (1)

O The choice of Parents(X) for a random variable X affects how far
conditional independence assumptions can be applied.
00 Parents(X) should contain all variables that directly influence X.

Example. Only Alarm directly influences MaryCalls. Given Alarm,
MaryCals is conditionally independent of Farthquake and Burglary:
P(MaryCals | Alarm, Earthquake, Burglary)

= P(MaryCals | Alarm).

\_ /
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/

1.
2.
3.

[]

the

\_

~

Incremental Belief Network CO"StrUCtiO"I

A belief network can be constructed as follows:

Choose variables X1, ..., X, for describing the domain of interest.

Choose an ordering for the variables.

While there are unprocessed variables do the following:
(a) Pick the next variable X; and add it as a node to the network.

(b) Set Parents(X;) to some minimal set of nodes already in the
network so that conditional independence property (1) holds.

(c) Define the conditional probability table for X.

The resulting network is automatically acyclic and consequently
axioms of probability are also satisfied.

/
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On Compactness and Node Ordering'

A belief network can be a compact representation of the joint
probability distribution (locally structured or sparse system).

If each Boolean variable directly influences at most k other, then
only n2* probabilities have to be specified (instead of 27).

Example. When n = 20 and k = 5, we would have to specify
n2* = 640 and 2" = 1048576 probabilities, respectively.

Number of arcs (accuracy of probabilities) versus
cost of specifying extra information (extending CPTs).

Choosing a good node ordering is a non-trivial task.

Heuristics: the root causes of the domain should be added first,

then the variables influenced by them, and so forth.

/
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Example. Let us reconstruct the belief network for the alarm domain
using a different node ordering:

MaryCalls, JohnCalls, Alarm, Burglary, Earthquake
1. As the first node, MaryCalls gets no parents.

2. When JohnCals is added, MaryCals becomes a parent of
JohnCals, as P(JohnCalls | MaryCalls) # P(JohnCalls).

3. Similarly, Alarm depends on both MaryCalls and JohnCals.

4. Since P(Burglary | Alarm, JohnCalls, MaryCalls) =
P(Burglary | Alarm), the only parent of Burglary is Alarm.

5. Nodes Burglary and Alarm become parents of Farthquake, as
P(Earthquake | Burglary, Alarm, JohnCalls, MaryCalls) =
P(Earthq“ake | Burglary, Alarm).

aboratory tor eoretical Computer Science

T-79.230 / Spring 2003 Belief networks

-

O The resulting belief network is given below on the left-hand side:

~

MaryCalls

Earthquake

Earthquake

O The one on the right-hand side is obtained with another ordering

\_ /

Burglary

and it as complex as the full joint distribution!
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O Specifying conditional probability tables means often a lot of work.

~

0 To ease this process, some canonical distributions have been
proposed such as deterministic and noisy logical relationships.

O In the deterministic case, there is no uncertainty and the value of
X is obtained as a logical function from those of Parents(X).

Example. Define NorthAmerican <> Canadian V US V Mexican.
This corresponds to specifying a CPT as follows:

Canadian | US | Mexzican | NorthAmerican
F F F 0.0
T F F 1.0

\_ /
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Noisy Logical Relationships'

O Noisy logical relationships add some uncertainty to the scenario.

~

O A noisy OR relationship comprises the following principles:
1. Each cause has an independent chance of causing the effect.
2. All possible causes are listed.

3. Whatever inhibits some cause from causing an effect is
independent of whatever inhibits other causes from causing the
effect. Inhibitors are summarized as noise parameters.

O A noisy OR relationship in which a variable depends on k parents
can be described using k parameters.

In contrast to this, 2¥ entries are needed if a full CPT is specified.

\ J
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Example. Let us consider a2 medical domain including the variables
Fever (a symptom), Cold, Flu, and Malaria (diseases).
Using parameters P(—Fever | Cold) = 0.6, P(—Fever | Flu) = 0.2,
and P(—Fever | Malaria) = 0.1, the following CPT is obtained:

Cold Flu Malaria | P(Fever) | P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 02=02x0.1

T F F 0.4 0.6

T F T 0.94 0.06 = 0.6 x 0.1

T T F 0.88 0.2=0.6x0.2

T T T 0.988 0.02=0.6 x0.2x0.1

\_ /

© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Belief networks

/ Conditional Independence Relations' \

0 Mutually independent sets of nodes can be distinguished using the

notion of direction-dependent separation (or d-separation).

Definition. Let X, Y and E be sets of nodes/variables. Then X and
Y are conditionally independent given E, if every undirected path from
a node in X to a node in Y is d-separated by F.

o | OO0
@ | OO
® | O

X Y

010
01O
O-+0

\ /
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xample. Let us have a look on the following belief network which

_ , _ _ On the Nature of Probabilistic Inferences'
describes some features of a car’s electrical system and engine.

0 Causalinferences (from causes to effects):
P(JohnCals | Burglary) = 0.9 x 0.95+ 0.05 x 0.05 = 0.8575 and

P(MaryCalls | Burglary) = 0.7 x 0.95 4 0.01 x 0.05 = 0.6655.
|:| John and Mary call quite reliably in case of a burglary.

A

[0 Diagnostic inferences (from effects to causes):
P(Burglary | JohnCalls) = P(J"h"c"lﬁﬁ‘(?:,:ffggl)g(B"Tgl“”"‘) ~ 0.0164
where P(JohnCalls) =

P(JohnCals | Alarm)P(Alarm) +

P(JohnCals | = Alarm)P(=Alarm) ~ 0.0521
* Gas and Radio are independent given Battery, and and P(=Alarm) = 1 — P(Alarm) =~ 0.99747

According to this model,

» Gas and Radio are dependent given —Starts. (see the next slide how to compute P(Alarm) = 0.00253).

/ \_ /
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\ INFERENCE IN BELIEF NETWORKSI

O The task is to compute P(Q1,...,Qn | E1=e€1,...,Epn =€)

A

O Intercausalinferences (between causes/common effect):

P(Burglary | Alarm) = P(Alarm‘B“;%ZZEJT)TI:)(BWQMW) ~ 0.376

given query variables (Q1,...,Q, and exact values ey, ..., e,, for
some evidence variables E;. ... E,,. where P(Alarm | Burglary) = 0.95, P(Burglary) = 0.001, and
Examples. Recalling the alarm example, how to evaluate queries P(Alarm) = 0.95 x 0.001 x 0.002 +
such as P(Burglary | JohnCalls, MaryCalls) and 0.95 x 0.001 x 0.998 +
P(Alarm | JohnCalls, Earthquake)? 0.29 x 0.999 x 0.002 -
O An agent gets values for evidence variables from its percepts and 0.001 x 0.999 x 0.998

asks about the possible values of other variables so that it can

~ 0.0025264.
decide what action to take (recall the decision theoretic design). ke) ~ 0.003
On the other hand, P(BurglarylAlarm A Earthqt® e) ~ 0.

0 We need a procedure BEIRENET-TELL for adding evidence to |:|

A hquak lai h ibility of lary.
the network and a function BERENET- ASK for computing the n earthquake explains away the possibility of a burglary

/ \ /
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O The distribution P(X | E) is obtained by normalization:

.

T-79.230 / Spring 2003 Belief networks 21

~

O Mixddferences (combining two or more of the above):

P(Alarm|JohnCalls N ~Earthquake) ~ 0.030 and
p(Burglary\JohnCalls A —~Earthquake) ~ 0.017.

O The four reasoning modes can be illustrated as follows:
e (Explaining Away)
Diagnostic Causal Mixed

Inter causal

O One might perform sensitivity analysis to understand which
aspects of the model have the greatest impact on the probabilities

/

of the query variables.

© 2003 HUT / Laboratory for Theoretical Computer Science
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An Algorithm for Query Answering'

O A polytree is a sin8ly connected graph: there is at most one
undirected path between any two nodes.

O If a belief network forms a polytree, the probability distribution
P(X | E) can be computed very efficiently (in linear time).
0 The set of evidence variables E is partitioned w.r.t. X:

— The causal support EY; for X: evidence variables in E that
are connected to X through its parents.

— The evidential support £ for X: evidence variables in £
that are connected to X through its children.

P(X | E) = aP(Ex | X)P(X | EY).

/
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-~

O The supports EY and Ex for X can be illustrated as follows
(all the boxes are disjoint and have no links connecting them):

+
X

\_

~

/
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MULTIPLY CONNECTED NETWORKS'

0 A belief network is multiply connected if there are at least two
variables X and Y connected by more than one path, i.e.,
X and Y are interconnected by several causal mechanisms.

O Algorithms for polytree networks can be used as subroutines in
algorithms for general (multiply connected) networks.

0 Different methods exist for multiply connected networks:
— Clustering methods
— Cutset conditioning methods

— Stochastic simulation methods

O In the general cag, exact inference in belief networks is NP-hard.

.

~

/

© 2003 HUT / Laboratory for Theoretical Computer Science

23

24



A

A

T-79.230 / Spring 2003 Belief networks

/ Clustering Methods' \

O Multiply connected belief networks are transformed into polytrees
by combining some nodes into meganodes.

Example. Consider clustering the nodes Sprinkler and Rain in the
following multiply connected network:

cl| m9

c| PR
F .20

A Ao
mH T Ao
0
8

\_ - /
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The following polytree network is obtained:

P(S+R=x)
c| T TF FT FF
@ T| 08 02 72 18
SR | Pw) F| 40 .10 .40 .10
TT 99
TF 90 %
FT 90
FF .00

O Linear time algorithms can be used for query answering, but the
size of the network grows exponentially in the worst case.

O Typically, there are several ways to compose meganodes and it is

non-trivial to choose the best way to perform clustering.

\ J
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Cutset Cgnditioning Methods'

0 In cutset conditioning. the network is decomposed into several

4 N

simpler polytrees by instantiating variables to definite values.

O The probability P(X | E) is computed as a weighted average over
the probabilities computed using each polytree in turn.

Example. The instantiation of Cloudy yields two polytrees:

/X

/= e p
(o) (
< ==

GO CO B )
<
()
/
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/ Stochastic Simulation Methods'

Logic samplin&:

~

O Logic sampling is based on a stochastic simulation of the world
described by a belief network.

O Starting from the root nodes, atomic events are randomly
generated by selecting definite values for random variables.

O The value for a random variable X is chosen according to the
conditional probability table associated with X.

O A distribution P(X | E) = % of interest is estimated by

counting the frequencies with which events occur.

O Logic sampling is not very useful if E occurs very rarely.

kExample. E.g., P(WetGrass | Sprinkler A Rain) converges slowly. J

© 2003 HUT / Laboratory for Theoretical Computer Science
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/

d

Likelihood weighting:

~

Likelihood weighting is similar to logic sampling, but the values of
evidence variables E are not randomly chosen.

The CPT associated with E is consulted to to see how likely the

value of E = e is given the values of preceding nodes X1,...,X,,.

In this way, the conditional probability P(e | z1,...,2,) is

interpreted as a likelihood weight for that particular run.

An estimate of P(X =z | E = e) is obtained as a weighted
proportion of runs with X = x among the runs accumulated so far.

Likelihood weighting converges much faster than logic sampling.

Getting accurate probabilities for unlikely events is still a problem.

/
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Example. Let us estimate the conditional probability
P(WetGrass | Rain) by likelihood weighting.

The values of variables are chosen randomly as follows:

1.
2.

3.

. P(WetGrass|Sprinkler A Rain) = 0.99:

|:| We have completed a run saying that WetGrass = True given
Rain = True with a likelihood weight 0.2.

~

P(Cloudy) = 0.5: Cloudy := Fals€ is chosen.
P(Sprinkler | = Cloudy) = 0.5: Sprinkler := True is chosen.

Rain is an evidence variable that has been set to True:
P(Rain | =Cloudy) = 0.2.

WetGrass := True is chosen.

/
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Knowledge® Engineering for Uncertainty'

0 Decide which aspects of the system are modeled.

~

O Decide on a vocabulary of random variables.

O Encode general knowledge about dependencies among variables:
— Qualitative dependency information as links between variables

— Quantitative dependency information as probabilities
(frequencies or experts’ subjective estimates)

0 Encode a description of the specific problem instance.
O Pose queries to the inference procedure and get answers.

Example. PATHFINDER is a diagnostic expert system for lymph-node

diseases. When compared with real physicians, PATHFINDER IV made
(successful diagnosis for 89% out of 53 patients being diagnosed. /

(© 2003 HUT / Laboratory for Theoretical Computer Science
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OTHER APPROACHES TO UNCERTAINTYI

O Early expert systems were based on strict logical reasoning.

0 Probabilistic techniques were dominating in the second generation,
but these techniques suffered from the exponential blow-up of the
joint probability distribution w.r.t. the number of variables.

O Consequently, many alternatives to probabilities were pursued:

1. Default reasoning

2. Rules with certainty factors
3. Dempster-Shafer theory

4. Fuzzy logic

\_ /
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Default Reasoning'

0 Reasoning by default means inferring something in the absence of

Belief networks

~

any information to the contrary.
O Provides a compact way to encode exceptions to general principles.
O A qualitative approach to handle uncertainty.

0 Default reasoning violates the monotonicity property of classical
logic: if X1 = ¢ and X; C X5, then Xy = ¢.

O Several formalizations of non-monotonic reasoning have been
proposed: default logic [Reiter, 1980], circumscription
[McCarthy, 1980], autoepistemic logic [Moore, 1983], ...

O Implementation techniques have substantially improved during 90s.

/
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O Logic programs with negation as failure to prove from an
important subclass of non-monotonic theories.

Example. Let us describe the applicability of actions using rules:
{ doable(A) + preconds(A) A not exceptional(A),

exceptional (A) < not deterministic(A),
exceptional (A) < delayed(A) }

0 The semantics of “not ¢" is different from classical negation —¢.

O The conclusion doable(run) can be drawn by the rules above
given the premises preconds(run) and deterministic(run).

O Such a conclusion is no longer possible if delayed(run) is
introduced as an additional premise.

O Dropping the premise deterministic(A) has the same effect.

© 2003 HUT / Laboratory for Theoretical Computer Science
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/ Logical Rules and Certainty Factors'

0 Reasoning systems based on classical logic have important
properties that are lacked by their probabilistic counterparts:

Belief networks

~

1. Locality: a rule can be used for making inferences without
worrying about the other rules in the system.

2. Detachment: if a sentence ¢ is proven to be valid, it can be
detached from its justification (proof), as it universally true.

3. Truth-functionality: the truth values of complex sentences
can be computed from the truth values of their components.

O Unfortunately, problems arise with truth-functionality and chained
inferences, if logical rules are equipPed with certainty factors.

Example. For instance, Sprinkler — WetGrass and

kWetGmss > Rain tend to imply Sprinkler — Rain.

/
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Dempster-Shafer theOry I

O Dempster-Shafer theory has been designed to deal with the

distinction between uncertainty and ignorance.

00 The belief function Bel(X) gives the probability that the evidence
obtained so far supports X.

Example. Consider flipping a coin under the following circumstances:

1. If the coin is doubted to be unfair (nothing can be assumed about
its behavior), then Bel(Heads) = 0 and Bel(—Heads) = 0.

2. If the coin is fair with a certainty of 0.9, then we have
Bel(Heads) = 0.5 x 0.9 = 0.45 and Bel(—Heads) = 0.45

|:| We obtain probability intervals [0,1] and [0.45,0.55] for Heads.

\_ /
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Fuzzy Logic I

Fuzzy set theory is about specifying how well an object satisfies
a vague description rather than uncertainty.

Example. For instance, a statement like "Mika Myllyl3 is tall”
can be assigned a truth value between 0 and 1
(even if it is known how tall he is).

The fuzzy truth of complex sentences is defined truth-functionally:

T(¢ Ayp) = min(T(¢), T'(¥)),
T(¢ Vo) =max(T (), T(¢)), and
T(=4) = 1 - T(A).

Despite of semantic difficulties, fuzzy logic has been very

successful in commercial applications involving automated control.
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SUMMARYI \

Conditionalindependence information can be used for
structuring and simplifying knowledge about an uncertain domain.

Belief networks provide a natural way to represent conditional
independence information.

A belief network is a complete (and often also very compact)
representation of the joint probability distribution.
Belief networks Support various reasoning models: causal,

diagnostic, mixed, intercausal, ...

Efficient algorithms exist for belief networks that are topologically
polytrees, but reasoning with belief networks is NP-hard in general.

Probabilities can be estimated by stochastic simulation.

/
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QUESTIONSI

Build a belief network for the soccer domain.
1. Choose appropriate variables for the description of the domain.
2. Choose an ordering for the variables.

3. Construct the actual belief network by (i) analyzing
dependencies among variables and (ii) defining CPTs for each
variable.

Make both causal and diagnostic inferences using the network.

/
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