"’

A

T-79.230 / Spring 2003 Intelligent Agents

/

INTELLIGENT AGENTSI

Outline

O Introduction

O How Agents Should Act

O Structure of Intelligent Agents

0 Environments

Based on the textbooky S. Russell & P. Norvig:
Artificial Intelligene, A Modern ApProach, Chapter 2

_

© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents

-

INTRODUCTIONI

O Russell and Norvig define agents as follows:

“An agent is anything that can be viewed as perceiving

its environment through s€nsors and acting upon that
environment through effectors.”

sensors

percepts

actions

effectors

.

© 2003 HUT / Laboratory for Theoretical Computer Science

A

A

T-79.230 / Spring 2003 Intelligent Agents

-~

O
O

0
O

_

Examples.

A physical robot

A software robot (softbot)

Sensors: video camera, laser scanner, microphone, -

Effectors: motor, switch, display, speaker, ...

Percepts: encoded bit strings

Sensors and effectors:
calls to operating system, libraries or other programs

Calls to sensor programs provide input for the agent.

/

© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents

.

Problems:

[0 Self-deception: humans typically say they did not really want

0 Malpractice if performance is measured only instantly.

O You get what you ask for!

~

HOW AGENTS SHOULD ACTI

A rational agent should do the right thing, but how and when do
we evaluate agent’s success?

A performance measure determines how successful an agent is
(by an outside observer).

something after they are unsuccessful at getting it.

(Performance measures have to be carefully chosen.)

/

© 2003 HUT / Laboratory for Theoretical Computer Science

A

A

T-79.230 / Spring 2003 Intelligent Agents

4 o N

An omniscient agent
O knows the actual outcomes of its actions and acts accordingly.

O is impossible in reality.

Example. A person is crossing a street, as (s)he noticed a friend
across the street and there is no traffic nearby.

O s this person acting rationally if (s)he is crashed by a cargo door
falling off a passing airplane?

\|:| Rationality: expected success given what has been perceived. J

© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents

Ideal Rational Age"tl

Rationality depends on four things:

O Performance measure which defines degree of success
O Percept sequence (complete perceptual history)

0 Agent's knowledge about the environment

O Agent's actions

Definition. (/deal rational agent)

For each possible percept sequene, an ideal rational agent should do
whatever action which is expected to maximize its performance
measure, on the basis of the evidence provideby the percept
equence and whatever built-in knowledge the agent has.

A

A

\ J

© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents

4 N

Example. Often begin rational requires performing actions in order to
acquire information about the environment.

O For instance, crossing a street without looking is too risky.

Example. A clock can be thought as a simple (even degenerate) agent
that keeps moving its hands (or displaying digits) in the proper way.

* This can be thought as rational action given what kind of

functionality one expects from a clock in general.

* However, many clocks are unable to take changing time zones into
account automatically. This is quite acceptable if the clock does
not have a mechanism for perceiving time zones.

_ /

(© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents

4 N

Mapping Percept Sequences to Actio"SI

[0 Agent's behavior depends only on its percept sequence to date.

O An ideal agent can be designeby

“specifying which action an agent ought to take in
response to any given percept sequence”.

0 The mapping can be represented as a table or as a program.

Example. Consider a calculator agent that computes square-roots of
positive integers (accurate to 15 decimals).

0 Approach 1: store square roots in a very large table.

0 Approach 2: implement the ideal mapping as a program.

The latter approach is clearly more compact and flexible.

/

© 2003 HUT / Laboratory for Theoretical Computer Science

A

A

T-79.230 / Spring 2003

/

g
a

O

O

_

Example. After digging its nest and laying its eggs, a dung beetle
fetches a ball of dung to plug the entrance.

\

An agent lacks autonomy if its actions depend solely on its built-in
knowledge about the environment.

A system is autonomous to the extent that its behavior is
determineby its own experience.

Flexible operation in a variety of environments demands ability to
learn (in addition to initial knowledge).

Even if the ball is removed from its grasp en route, the beetle
continues and mimics the procedure to the very end.

/

© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents 10

.

~

STRUCTURE OF INTELLIGENT AGENTSI

The goal is to design an agent program which implements the
mapping from percepts to actions.

An architecture is a computing device that makes percepts
available, runs the program and feeds action choices to effectors.

Summarizing: agent = architecture 4+ program.

Agents can be roughly categorized by identifying their percepts,
actions, goals and environments (so-called PAGE descriptions).

/

© 2003 HUT / Laboratory for Theoretical Computer Science

Intelligent Agents 9

A

A

T-79.230 / Spring 2003 Intelligent Agents

Examples. PAGE descriptions for some types of agents.
Agent Type Percepts Actions Goals Environment
Medical diagnosis Symptoms, Questions, tests, Healthy patient, Patient, hospital
system findings, patient's treatments minimize costs
answers
Satellite image Pixels of varying Printa Correct Images from
analysissystem intensity, color categorization of categorization orbiting satellite
scene
Part-picking robot Pixels of varying Pick up parts and Place partsin Conveyor belt
intensity sort into bins correct bins with parts
Refinery controller Temperature, Open, close Maximize purity, Refinery
pressurereadings valves; adjust yield, safety
temperature
Interactive English Typed words Print exercises, Maximize Set of students
tutor suggestions, student's score on
corrections test

_ /

© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents

4 N

Agent Programs I

A skeleton for agent programs:
[0 A single percept is obtained as input.
O Memory is used for storing the percept history (if necessary).

O The program chooses and outputs an action to be executed next.

function SKELETON-AGENT(percept) returns action
static: memory, the agent's memory of the world

memory < UPDATE-MEMORY (memory, percept)
action ¢ CHOOSE-BEST-ACTION(memory)
memory «+— UPDATE-MEMORY (memory, action)
return action

[0 The performance measure is not a part of the program.

\ /

© 2003 HUT / Laboratory for Theoretical Computer Science

11

12

A

A

T-79.230 / Spring 2003 Intelligent Agents

Using Lookup Tables'

An agent program that looks up the action from a table:

function TABLE-DRIVEN-AGENT(percept) returnsaction
static: percepts, a sequence, initially empty
table, atable, indexed by percept sequences, initially fully specified

append percept to the end of percepts
action « LOOKUR(percepts, table)
return action

Drawbacks of lookup table agents:

1. The lookup table becomes easily very large
(2 chess playing agent would need a table with 35100 entries).

2. The table is difficult to build and maintain.

3. The resulting agent does not have autonomy at all.

4. It would take forever to learn the right values for all entries. J

(© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents

.

\

Consider designing an automated taxi driving agent with the
following PAGE description:

Agent Type Percepts Actions Gods Environment |

Taxi driver Cameras, Steer, accelerate, Safe, fast, legal, Roads, other
speedometer, GPS, brake, talk to comfortabletrip, traffic, pedestrians,
sonar, microphone passenger maximize profits customers

The full driving task is extremely open-ended: an unlimited
number of novel combinations of circumstances can arise.

Performance measures: (i) getting to the correct destination, (ii)
minimizing fuel consumption, trip time/cost, and traffic violations,
(iii) maximizing safety, passenger comfort, and profits.

/

© 2003 HUT / Laboratory for Theoretical Computer Science

13

14

A

A

T-79.230 / Spring 2003 Intelligent Agents

-~

0

O
O
O

Different Kinds of Agent Programs'

In the sequel, we will consider four kinds of agent programs:

Simple reflex agent
Agents that keep track of the world
Goal-based agents

Utility-based agents

© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents

.

Simple Reflex Agents'

Condition-action rules provide a way to represent common
regularities appearing in input/output associations:

if car-in-front-is-braking then initialize-braking
It is even possible to learn such rules on the fly.

Humans also have many such connections some of which are
learned responses and some of which are innate reflexes
(such as eye blinking in order to protect the eye).

Mimicking reflexes of living creatures, a reflex agent chooses the
next action on the basis of the current percept.

No track of the world/environment is kept.

/

© 2003 HUT / Laboratory for Theoretical Computer Science

15

16

A

A

T-79.230 / Spring 2003 Intelligent Agents 17

/D The structure of a simple reflex agent as a schematic diagram and\
the corresponding skeletal agent program:

[Agent s £)
What the world
is like now
m
=
g
o
S|
g
®
=
s,

k Effectors

function SIMPLE-REFLEX-AGENT(percept) returnsaction
static: rules, aset of condition-action rules

state + INTERPRET-INPUT(percept)
rule < RULE-MATCH(state, rules)
action « RULE-AcTION[rule]
return action

0 Rules provide an efficient representation, but one problem is that

\ decision making is seldom possible on the basis of a single percepy

© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents 18

Reflex Agents with Internal State'

0 The choice of actions may depend on the entire percept history.

0 Sensors do not necessarily provide access to the complete state of
the environment.

0 The agent keeps track of the world by extracting relevant
information from percepts and storing it in its memory.

0 Using a model of the environment, the agent may try to estimate
1. how the environment evolves in the (near) future, and
2. how the environment is affectebly the agent’s actions.

Example. In our taxi driving example, actions may depend on the
state, e.g. the position of an overtaking car.

\ /

(© 2003 HUT / Laboratory for Theoretical Computer Science

A

A

T-79.230 / Spring 2003 Intelligent Agents

/D A schematic diagram and a skeletal agent program for a reflex \
agent with an internal state:

4 e £)
What the world
How the world evolves e
m
=3
What my actions do =
o
=3
=
@
=
What action |
Condition-action rules o

Agent Effectors

function REFLEX-AGENT-WITH-STATE(percept) returns action
static: state, adescription of the current world state
rules, aset of condition-action rules

state < UPDATE-STATE(state, percept)
rule + RULE-MATCH(state, rules)
action < RULE-ACTION[rule]

state + UPDATE-STATE(state, action)
return action

_ /

© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents

4 N
Goal-based agents I

O Knowing about the current state of the environment is not

necessarily enough for deciding what to do.

O In addition, the agent may need goals to distinguish which
situations are desirable and which are not.

O Goal information can be combined with the agent's knowledge
about the results of possible actions in order to choose an action
leading to a goal.

O Problem: goals are not necessarily achievable by a single action.

O Search and planning are subfields of Al devoted to finding
actions sequences that achieve the agent's goals.

\ /

(© 2003 HUT / Laboratory for Theoretical Computer Science

19

20

A

A

T-79.230 / Spring 2003 Intelligent Agents

/D A schematic diagram for a goal-based agent:

a RN
Sensors
.State

What the world
(How the world evolves
What my actions do What it will be like

if 1 do action A

luswuolinug

What action |
should do now

Goals

Agent

o

Effectors -

Additional flexibility compared to previous designs: the behavior of

a goal-based agent can be changed by changing its goal(s).

/

© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents

.

~

Utility-based agents I

Goals alone are not sufficient for decision making if there are
several ways of achieving them.

Further problem: agents may have several conflicting goals that
cannot be achieved simultaneously.

If an agent prefers one world state to another state then the
former state has higher utility for the agent.

Utility is a function that maps a state onto a real number.

Utility can be used for (i) choosing the best plan, (ii) resolving
conflicts among goals, and (iii) estimating the successfulness of an

/

agent if the outcomes of actions are uncertain.

© 2003 HUT / Laboratory for Theoretical Computer Science

21

22

A

A

T-79.230 / Spring 2003 Intelligent Agents

/D A schematic diagram for a utility-based agent:

e D A

Sensors

What the world

How the world evolves
: E What it will be like

What my actions do if I do action A

i How happy | will be

oty }——e

What action |

should do now

Effectors

luswuolinug

Agent

"

J

An agent that possesses an explicit utility function can make
rational decisions, but may have to compare the utilities achieved

by different courses of actions.

/

© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents

.

~

ENVIRONMENTS I

All the preceding agent designs are based on the same
interconnection between an agent and its environment:

1. The agent performs actions on the environment.
2. The environment provides percepts to the agent.

Environments can be distinguished by their properties which in
turn affect the design of respective agents.

Environment programs (that simulate particular environments)
can be used as testbeds for agent programs.

/

© 2003 HUT / Laboratory for Theoretical Computer Science

23

24

A

A

/

-

& and agents are conceptualized.

T-79.230 / Spring 2003 Intelligent Agents

Properties of Environments I

Environments can be categorized by several aspects such as

00 Accessible vs. inaccessible state of the environment

Also: effectively accessible (w.r.t. choice of actions)
O Deterministic vs. nondeterministic outcomes of agent's actions
O Episodic vs. nonepisodic

O Static vs. dynamic

Also: semidynamic (perfomance degrades over time)

O Discrete vs. continuous

© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents

Examples. Analyzing properties of a number of familiar environments.

Environment Accessible Deterministic Episodic Static Discrete
Chesswith aclock Yes Yes No Semi Yes
Chess without a clock Yes Yes No Yes Yes
Poker No No No Yes Yes
Backgammon Yes No No Yes Yes
Taxi driving No No No No No
Medical diagnosis system No No No No No
Image-analysis system Yes Yes Yes Semi No
Part-picking robot No No Yes No No
Refinery controller No No No No No
Interactive English tutor No No No No Yes

0 Some of the properties are dependent on how the environments

© 2003 HUT / Laboratory for Theoretical Computer Science

/

~

/

25

26

A

A

-

T-79.230 / Spring 2003 Intelligent Agents

/ Programs Simulating Environments' \

procedure RUN-ENVIRONMENT(state, UPDATE-FN, agents, ter mination)
inputs: state, theinitial state of the environment
UPDATE-FN, function to modify the environment
agents, a set of agents
termination, a predicate to test when we are done

repeat
for each agentin agentsdo
PERCEPT[agent] + GET-PERCEPT(agent, state)
end
for each agentin agentsdo
AcTioN[agent] + PROGRAM[agent](PERCEPT[agent])
end
state « UPDATE-FN(actions, agents, state)
until termination(state)

O Agents are typically designed to work correctly in a class of
environments (that has to be covered by a simulator somehow).

O Agent programs should not have other access than percepts to the

k state of the program simulating their environment! /

(© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents

O The performance of agents can be measurebly inserting special
measurement code to simulator programs.

function RUN-EVAL-ENVIRONMENT(State, UPDATE-FN, agents,
termination, PERFORMANCE-FN) returns scores
local variables: scores, a vector the same size asagents, all 0

repeat
for each agentin agentsdo
PeRcEPT[agent] < GET-PERCEPT(agent, state)
end
for each agentin agentsdo
AcTION[agent] «+ PROGRAM[agent](PERCEPT[agent])
end
state < UPDATE-FN(actions, agents, state)
scores< PERFORMANCE-FN(scores, agents, state)
until termination(state)

return scores / * change*/

.

© 2003 HUT / Laboratory for Theoretical Computer Science

~

27

28

A

A

T-79.230 / Spring 2003 Intelligent Agents

-

O o o od

SUMMARYI

An agent program maps a percept (sequence) to an action.
Agent = architecture + agent program
An ideal agent maximizes its performance measure.

An agent can be describebly its percepts, actions, goals and
environment (PAGE description).

O Various agent types: reflex agents with(out) internal state,

goal-based agents, utility-based agents

O Important aspects of agent program design:

efficiency, compactness, flexibility

/

© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents

~

-

e e e |

~

(Al) TECHNIQUES FOR AGENT DESIGNI

Knowledge representation and reasoning
Search algorithms

Planning

Learning

Decision theory

Natural language processing

Perception

Robotics

/

© 2003 HUT / Laboratory for Theoretical Computer Science

29

30

A

A

T-79.230 / Spring 2003 Intelligent Agents

-~

Knowledge-based Agents'

function KB-AGENT(percept) returnsan action
static: KB, aknowledge base
t, acounter, initially O, indicating time

TELL (KB, MAKE-PERCEPT-SENTENCE(percept, t))
action «— Ask(KB, MAKE-ACTION-QUERY (t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
tet+1

return action

/DDD

Incomplete information
Uncertainty

Probability

(© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents

-

Plannin8 Agents'

function SIMPLE-PLANNING-AGENT(percept) returnsan action
static: KB, aknowledge base (includes action descriptions)
p, aplan, initially NoPlan
t, acounter, initially O, indicating time
local variables: G, agoa
current, a current state description

TELL (KB, MAKE-PERCEPT-SENTENCE(percept, t))
current « STATE-DESCRIPTION(KB, t)
if p = NoPlan then

G + AsK(KB, MAKE-GOAL-QUERY(t))

p < IDEAL-PLANNER(current, G, KB)
if p = NoPlan or p is empty then action + NoOp
else

action « FIRST(p)

p « REST(p)
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
te—t+1
return action

\

© 2003 HUT / Laboratory for Theoretical Computer Science

31

32

A

A

T-79.230 / Spring 2003 Intelligent Agents

/

_

Learning Agentsl

Performance standard

é))

)

Critic ~¢————————— Sensors ==
feedback

m

S

\ changes \ <.

. o -

Learning Performance o

element element =

nowledge 3

learning o)

goals >

‘ —
Problem
generator

\ J
KAgent Effectors / >

© 2003 HUT / Laboratory for Theoretical Computer Science

T-79.230 / Spring 2003 Intelligent Agents

QUESTIONSI

Analyze soccer playing agents by Writing down

1.
2.

a PAGE description, and

main properties of the environment.

Consider the following designs for soccer playing agents:

1. Simple reflex agent

2. Reflex agent with internal state
3. Agent with explicit goals

4.
5
6

Utility-based agent

. Planning agent

. Learning agent

What kind of functionality can be implemented using these?

© 2003 HUT / Laboratory for Theoretical Computer Science

33

34

