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Abstract

Wireless sensor networks are able to collect large amounts of data.
Often the objective is to get an estimate of some parameter or function
of the data. In this case it may be beneficial to calculate these parame-
ters in a distributed manner instead of sending the raw data to central
node for processing. The paper[1] investigates a class of distributed
algorithms that circulate the estimates of parameters through the net-
work. Each node updates the parameters based on its own measure-
ments. The paper uses theory of incremental subgradient optimization
to create local update functions and to prove that the algorithm con-
verges to within a ε-ball around the globally optimal value. The tech-
nique is then used for problems like robust estimation and source local-
ization. Some simulation results are presented for these applications.

1 Introduction
A major issue in developing sensor network algorithms is that data trasmis-
sion from sensors to central processing location may demand a lot of en-
ergy and communication resources. In many cases, however, we are not
interested in raw data as such, but rather in an estimate of parameters
or functions on that data, for example source locations or average of the
measurements. Instead of computing these parameters centrally, the pa-
per investigates algorithms that creates estimates for them in the network.

The idea and motivation is illustrated with an example where we have
a sensor network with n sensors uniformly distributed over a square meter,
each taking m measurements and we want to calculate the average of the
measurements. Three possible approaches presented are:

• Sending all the measurements to central node which calculates the
average. O(nm) bits are sent over an average of O(1) meters.
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• Counting average of the local measurements at each node and sending
that to central node which calculates the average of those. Only O(n)
bits are sent over an average of O(1) meters.

• Constructing a Hamilton cycle over the network through which the
global average is accumulated each node adding their local average.
Only O(n) bits are sent over an average of O(n−1/2) meters.

The last approach can be generalized to other estimates besides average
by creating cost functions to be minimized. The local averages can be
viewed as values minimizing quadratic cost functions. Quadratic optimiza-
tion problems have solutions that are linear functions of data, so simple ac-
cumulation process leads to a solution. This is not the case for more general
optimization problems, but many can still be calculated using similar dis-
tributed approach. Specifically, many estimation criteria can be presented
the following form:

f(θ) =
1

n

n
∑

i=1

fi(θ),

where θ is the parameter to be estimated and f(θ) is the cost function that
can be expressed as a sum of local functions fi which depend only on local
data at sensors. In the case of average,

f(θ) =
1

mn

n
∑

i=1

m
∑

j=1

(xi.j − θ)2

fi(θ) =
1

m

m
∑

j=1

(xi.j − θ)2,

where n is the number of sensors, m is the number of measurements taken
at each sensor and xi,j is the j-th measure at sensor i.

The algorithms presented in the paper operate in a simple manner. A
Hamilton cycle is constructed over the sensor network and current estimate
of the parameter θ is passed from node to node along the cycle. Each node
updates the estimate by improving its local cost. When calculating the av-
erage like above, one pass through the network is enough, but generally
several cycles are needed.

2 Decentralized Incremental Optimization
The following inequality holds for the gradient of a convex differentiable
function f : Θ → < at point θ0 for all θ ∈ Θ:
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f(θ) ≥ f(θ0) + (θ − θ0)
T∇f(θ0)

More generally, for a convex function f a subgradient of f at θ0 is any di-
rection g such that:

f(θ) ≥ f(θ0) + (θ − θ0)
T g

Subgradient ∂f(θ0) is the set of all subgradients of f at θ0.
Now given a network of n sensors and m measurements per node, if we

let xi,jdenote the j-th measurement at i-th node, we want to compute

θ̂ = argmin
θ∈Θ

1

n

n
∑

i=1

fi({xi,j}
m
j=1, θ),

where θ is the set of parameters we want to measure.
Gradient descent is a popular technique for solving convex optimization

tasks iteratively. In the central version the update rule is

θ̂(k+1) = θ̂(k) − α

n
∑

i=1

gi,k

where gi,k ∈ ∂f(θ̂(k), α is a positive step size and k is the iteration number.
For the distributed version, one update iteration is replaced with a cycle of
n subiterations performed at each node.

The convergence of incremental subgradient optimization is analyzed
in [2]. Assuming an optimal solution θ∗ exists and for each subgradient
‖gi,k‖ ≤ ζ for some constant ζ, we have that after K cycles, with

K =









∥

∥

∥
θ̂(0) − θ∗

∥

∥

∥

α2ζ2









we are guaranteed that

min
0≤k≤K

f(θ̂(k)) ≤ f(θ∗) + αζ2.

Bounding the distance between starting point θ̂(0) and optimal value θ∗by
∥

∥

∥
θ̂(0) − θ∗

∥

∥

∥
≤ c0 and setting desired level of accuracy ε = αζ2, we get the

minimum number of cycles
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K ≤
c0ζ

2

ε2

= O(ε−2)

after which we are guaranteed to be within a ε-ball of the optimal value.
Using diminishing sequence of step sizes ak → 0, as k → ∞would guarantee
converging to optimal value, but authors recommend against it, because the
rate of convergence generally gets very slow with small step sizes.

3 Energy-Accuracy Tradeoffs
Assuming a packet based multihop communication model, energy used by
the network for wireless communication can be calculated with

E(n) = b(n) × h(n) × e(n),

where b(n) is the number of packets transmitted, h(n) is the average num-
ber of hops over which communication occurs, and e(n) is the average en-
ergy consumed when transferring one packet through one hop. The paper
compares the energy consumption of the incremental method with a naive
method where all the nodes send all their data to the central node. In the
central method, bcen(n) = O(mn) and hcen(n) = O(n1/d), where d is the di-
mension of space the sensors are distributed over. Because of the multi-hop
model, we do not need to quantify e(n), the average hop distance being the
same for both methods. We get

Ecen(n) ≥ c1mn1+1/de(n).

For the incremental method, bincr(n) = O(nK) and using the result K =
O(ε−2) from the previous section, we get bincr(n) = O(nε−2). Given the hop
count hincr(n) = 1, we get

Eincr(n) ≤ c2nε−2e(n)

The energy savings ratio for the incremental method can now be calculated:

R ≡
Ecen(n)

Eincr(n)
=

c1mn1+1/d

c2nε−2

= c3mn1/dε
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4 Applications
4.1 Robust Estimation
The accuracy of statistical interference procedures is depends heavily on
how well the chosen model matches the true model.

In the paper’s example a sensor network is set up for monitoring pollu-
tion level of a city. If sensor collects m measurements with variance of σ2,
then the sample mean pollution level p̂ = 1

mnΣi,jxi,j has variance σ2/mn.
If, however, 10% of the sensors are broken and give readings with variance
100σ2, the variance of the estimator increases by factor of roughly 10.

Robust statistics is a field developing interference procedures insensi-
tive to small deviations from the modelling assumptions. Robust estimation
techniques attempt to discard the “bad” measurements by replacing the
least squares loss function ‖x − θ‖

2with some robust loss function ρ(x, θ)
which usually gives less weight for data points that differ much from the
parameter θ. Then the modified cost function to be optimized is of form

frobust(θ) =
1

mn

n
∑

i=1

m
∑

j=1

ρ(xi,j , θ).

One example of loss function is l1-distance. Another one is Huber loss
function,

ρh(x; θ) =

{

‖x − θ‖2 /2, ‖x − θ‖ ≤ γ

γ ‖x − θ‖2 − γ2/2, ‖x − θ‖ γ > γ
.

A distributed robust estimation algorithm can be created by equating

fi(θ) =
m

∑

j=1

ρ(xi,j ; θ)

Using Huber loss function we fix the step size and determine the conver-
gence rate by observing

‖∇fi(θ)‖ ≤ γ ≡ ζ.

The performance of the procedure was tested by simulating a scenario
where 100 sensors, part of which were damaged, made each 10 one dimen-
sional measurements. Working sensors made readings with distribution
xi,j ∼ N(10, 1) and damaged sensors with xi,j ∼ N(10, 100). Huber loss
function with γ = 1 and step size α = 0.1 was used. Figure 1(a) and (b)
show the convergence behaviors of incremental robust estimate and incre-
mental least squares algorithm respectively, when 10% of the sensors are
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damaged. Least squares algorithm converges faster, but has more variance
than the robust algorithm. In a more extreme case in Figure(c) and (d) the
amount of damaged sensors is 50%. In both scenarios the simulation was
repeated 100 times and the authors claim that the robust algorithm always
converged (change in estimate was less than 0.1) after two cycles or 200
subiterations.

4.2 Energy-Based Source Localization
Locating acoustic source is a popular problem in military and environmen-
tal applications. In this problem, a source at unknown location θ in the
sensor field emits a signal isotropically and we want to locate it using sig-
nal energy measurements from the sensors.

We assume that sensors are distributed unformly over square or cube
with side of length D � 1 and each sensor knows its location. Isotropic
energy propagation model gives the j-th measurement at node i:

xi,j =
A

‖θ − ri‖
β

+ wi,j ,

where A > 0 is constant,‖θ − ri‖ > 1, β ≥ 1 describes the attenuation char-
acteristics of the medium and wi,jare samples of zero-mean Gaussian noise
process with variance σ2. The maximum likelihood estimate for source lo-
cation can be found by solving:

θ̂ = arg min
θ

1

mn

n
∑

i=1

m
∑

j=1

(xi,j −
A

‖θ − ri‖
β
)2

This fits into the incremental subgradient framework. By letting

fi(θ) =
1

m

m
∑

j=1

(xi,j −
A

‖θ − ri‖
β
)2

and limiting the measurement capabilities of the sensors with
∣

∣

∣
xi,j − A ‖θ − ri‖

−β
∣

∣

∣
<

c4, we get bound for the gradient:

‖∇fi(θ)‖ ≤
2βA ‖θ − ri‖

‖θ − ri‖
β+2

m
∑

j=1

∣

∣

∣

∣

∣

xi,j −
A

‖θ − ri‖
β

∣

∣

∣

∣

∣

< 2βAc4

The algorithm was simulated with 100 sensors uniformly distributed
over 100 × 100 square and the source placed at random. Source had signal

6



strength A = 100 and each sensor made 10 measurements with signal-to-
noise ratio of 3dB. Figure 2 shows an example path taken by the algorithm.
The algorithm converged to a within radius 1 of the source location after an
average of 45 cycles.

Conclusions and personal observations
The paper investigated a simple family of distributed algorithms for sensor
networks that operate by circulating parameter estimates through the net-
work, each node making small updates for the estimates. The algorithms
were variants of incremental subgradient optimization procedures, which
was used to get theoretical results for their performance. The algorithms
were shown to produce estimates of parameters within ε-ball of true values
with K = O(ε−2) cycles. The amount of communication needed was shown
to be about a factor of K/(mn1/d) less than with a naive scheme that sends
all the data to central node for processing.

The problem of creating the Hamilton cycle in the network, which gen-
erally is a NP-complete problem, was addressed in the paper. However the
authors present in[3] techiques to do this efficiently in random geometric
graphs.

Assuming the distance between neighboring nodes in the cycle does not
vary greatly, the consumption of energy should be pretty even between the
nodes increasing the lifetime of the network.

The cyclic routing is unfortunately very sensitive to node failures. When
one node goes down, the whole network breaks until a new cycle is built.

In the source localization problem, the number of cycles required is quite
large and every node needs to participate even if they are far from the
source and do not contribute much to the localization. Having smaller local
cycles and choosing between them based on the energy levels measured by
the sensors could perhaps lead to a faster algorithm that uses less energy.
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Figure 1: Robust incremental estimation procedure using Huber loss func-
tion (a), (c) and least squares estimates (b), (d) in the scenario with dam-
aged sensors.
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Figure 2: An example path taken by incremental subgradient algorithm
finding the acoustic source. True source location is at (10,40)
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