
Summary of “A Distributed Algorithm for
Minimum-Weight Spanning Trees”

Janne Lindqvist

April 11, 2005

Abstract

This document summarizes the article published by Gallagerher et. al
on “A Distributed Algorithm for Minimum-Weight Spanning Trees”. The
asynchronous distributed algorithm determines a minimum-weight spanning
tree for an undirected graph that has distinct finite weights for every edge.

1 Introduction

This document summarizes a classical article by Gallagher, Humblet and Spira
published in 1983 [1]. In addition for the summary, I elaborate on some topics
that the authors of the original article considered as preliminaries.

The rest of the paper is organized as follows. In Section 2, I give the prelim-
inaries and fundamental assumptions for understanding the algorithm. Next, in
Section 3, I present the distributed algorithm. Brief summary of the analysis of
the algorithm is given in Section 4. Finally, in Section 5, I conclude the paper.

2 Preliminaries

An undirected graph is defined asG = (V,E), where V is a finite nonempty set
andE ⊆ V ×V. TheV is a set of nodesv and theE is a set of edgese. The
graph isconnectedif there is a path between any distincte. A graphGs = (Vs,Es)
is a spanning subgraphof G = (V,E) if Vs = V. A spanning treeof a graph is
an undirected connected acyclic spanning subgraph. Intuitively, a spanning tree
for a graph is a subgraph that has the minimum number of edges for maintaining
connectivity. [2]

1



2 PRELIMINARIES 2

Let w(e) be aweight for an edgee in a graph. Then, the weight of a tree is
the sum of all thew(e) in the tree. Aminimum-weight spanning tree(MST) is a
spanning tree where the sum ofw(e) is minimal.

A fragmentof an MST is a subtree of the MST. Anoutgoing edgeis an edge
of a fragment if there is a node connected to the edge in the fragment and one
node connected that is not in the fragment.

A levelof a fragment is defined as follows. A fragment with a single node has
the level L = 0. Additionally, “suppose a given fragment F is at level≥ 0 and the
fragment F’ at the other end of F’s minimum-weight outgoing edge is at level L’.
If L < L′, then fragment F is immediately absorbed as part of fragment F’.” The
expanded fragment is at level L’. “If L = L’ and fragments F and F’ have the same
minimum-weight outgoing edge, then the fragments combine immediately into a
new fragment at level L+1; the combining edge is then called the core of the new
fragment.” Otherwise, “fragment F waits until fragment F’ reaches a high enough
level for combination under the above rules”.

The two essential properties of MSTs for the algorithm in the article are:

Property 1 Given a fragment of an MST, lete be a minimum-
weight outgoing edge of the fragment. Then joiningeand its adjacent
nonfragment node to the fragment yields another fragment of an MST.

Property 2 If all the edges of a connected graph have different
weights, then the MST is unique.

The proofs of the properties are given in the article. Next, I will give the
underlying assumptions for the distributed algorithm.

2.1 Assumptions

The authors state the following assumptions for the algorithm:

• each node initially knows the weight of each adjacent edge

• each node performs the same local algorithm

• messages can be transmitted independently in both directions of an edge

• the messages arrive after an unpredictable but finite delay

• the messages contain no errors

• the messages arrive in sequence

• the weights for each edge aredistinct and finite

Next, I describe how the distributed algorithm works under the stated assump-
tions.



3 DESCRIPTION OF THE DISTRIBUTED ALGORITHM 3

3 Description of the Distributed Algorithm

The algorithm definies three different states of operation for a node. The states are
Sleeping, Find andFound. The states affect what of the following seven messages
are sent and how to react to the messages. The messages areInitiate , Test, Reject,
Accept, Report(W), Connect(L) andChange-core. Theidentifierof a fragment
is thecore edge, that is, the edge that connected the two fragments together.

When a single node wakes from the Sleep state, it processes the following
procedure:

Procedure 1 Node awakens
Select the adjacent edge with minimum weight
Mark the selected edge asBranch
Send Connect(L) over the edge
State = Found
Wait for response from the other end of the edge

The above procedure was the simplest case. Assume a fragment that consists
of more than one node. The fragment is level L and has been combined of two
fragments of level (L - 1). The combination of the fragment was established by a
single minimum-weight edge, which is called the core edge of the new fragment.
As explained above, the core edge is now the new identity of the fragment.

Two nodes adjancent to the core edge broadcast the Initiate message. The
Initiate message is propagated to all of the nodes in the fragment. The Initiate
messages consists of the fragment level, the identity and Find flag as parameter.
Thus, the Initiate message puts the receiving nodes in the Find status and informs
them about the new identity and fragment level. Additionally, the Initiate message
is passed to fragments at level (L - 1), so that they can join in the new fragment.

When a node receives the Initiate message, it processes the following proce-
dure:

Procedure 2 Classify adjancent edges
if edge = branchthen

classify asBranch
end if
if edge is not branch but joins two nodes of the fragmentthen

classify asRejected
end if
if edge is not branch and not rejectedthen

classify asBasic
end if
After the above procure, the node sends the Test message to the minimum

weight Basic edge. The Test message contains the fragment identity and level



3 DESCRIPTION OF THE DISTRIBUTED ALGORITHM 4

– Test(level). If the Test message is responded with the Reject message, the
node sends the Test message to the next best edge. If the Test message is re-
sponded with the Accept message, the node knows that the edge is an outgoing
edge from the node’s fragment. The Test messages are processed by recipients as
follows:

Procedure 3 Test message processing
if fragment identity is same as minethen

send Reject
else

if if my fragment level≥ Test(level)then
send Accept

end if
end if
By following the above procedures, all nodes in a fragment eventually find ex-

isting minimum-weight outgoing edges. Eachleaf node now sends the Report(W)
message on its inbound branch. The W is the weight of the minimum-weight out-
going edge or infinity if the node has no outgoing edges. If no node has outgoing
edges, the algorithm iscompleteand the fragment is the minimum-weight span-
ning tree.

Eachinterior node of the fragment wait until it has received the Report(W)
messages from all outbound fragment branches and found its own minimum-
weight outgoing edge. The node compares its own minimum-weight outgoing
edge and Report(W) messages and marks asbest-edgethe edge that has the small-
est weight. Then, it sends the Report(W) messages on its inbound branch and
transitions to the Found state. The best-edge marking is used as a backward route
for the Change-core message to be described.

The Report(W) messages are propagated in the network and eventually reach
the core edge. The nodes adjancent to the core edge can then determine on which
side the new minimum-weight outgoing edge is. The Change-core message is now
sent to the path marked with best-edge. The Change-core message changes the
inbound edge for each of the nodes traversed to correspond to best-edge. When
the Change-core message reaches the node with the minimum-weight outgoing
edge, the node sends the Connect(L) message over the edge. The L is the level of
the fragment.

The Connect(L) message has three possible outcomes. First, consider two
fragments that have the same minimum-weight outgoing edge and the fragments
are on the same level L. The fragments now combine into a new fragment of level
(L+1) and the minimum-weight outgoing edge is designated as the new core edge.
The new fragment sends the Initiate message described earlier and thus begins the
procedures again. Second, consider that the node which sends the Connect(L)



4 ANALYSIS OF THE ALGORITHM 5

message belongs to a lower level fragment than the recipient. If the recipient
node has not send a Report(W) message, the two fragments join. Then, the new
fragment tries to find a minimum-weight outgoing edge. Third, if the recipient
node has send a Report(W) message, the fragments join but the fragment with
the lower level does not participate in finding the new minimum-weight outgoing
edge.

The authors also outline a proof for the algorithm and give a short explanation
of a version that does not require distinct weights but requires unique and ordered
identities for the nodes.

4 Analysis of the Algorithm

The authors of the article show that the upper bound for the number of messages
exchanged during the execution of the algorithm is5N log2+2E, whereN is the
number of nodes andE is the number of edges in the graph. A message contains
at most one edge weigth andlog28N bits. A worst case time for the algorithm is
O(N logN).

5 Conclusion

The paper presented an asynchronous distributed algorithm that determines a min-
imum-weight spanning tree for an undirected graph that has distinct finite weights
for every edge. As such, the algorithm is not usable in real networks because
of the assumption of distinct weights. A modified version is however in use in
modern devices that connect local area networks (LAN). The devices are called
bridgesand they form a spanning tree for ensuring that broadcast messages are
delivered properly. A more elegant version of the algorithm is used in another
type of bridged LANs, in systems called virtual local area networks (VLAN).
Distributed spanning tree algorithms are also used by multicast routing protocols
for establishing connectivity to only the needed nodes (routers) in the network.

References

[1] GALLAGHER , R. G., HUMBLET, P. A., AND SPIRA, P. M. A Distributed
Algorithm for Minimum-Weight Spanning Trees.ACM Transactions on Pro-
gramming Languages and Systems 5, 1 (Jan. 1983), 66–77.

[2] GRIMALDI , R. P. Discrete and Combinatorial Mathematics, An Applied In-
troduction. Addison Wesley Longman, Inc., 1999.


