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Abstract

In ad-hoc wireless networks, certain network connectivity constraints
are of interest because of their practical importance. An example of such
a constraint would be strong connectivity. The aim is usually to minimize
the power used to maintain such connectivities by adjusting the transmis-
sion power of the nodes of the network. Such problems are called Power

Assignment problems. Another set of similar problem classes called Net-

work Lifetime problems arise if the nodes have initial battery supply de-
pending on the node and the aim is to maintain a connectivity constraint
as long as possible in the network.

Calinescu et al.[1] give approximation algorithms for the Min-Power

Symmetric Connectivity, Min-Power Strong Connectivity and Min-Power

Broadcast and give a special treatment for the important case of Min-
Power Symmetric Connectivity in the Euclidean with node-dependent
transmission efficiency. For Network Lifetime, an approximation algo-
rithm is given based on the polynomial time approximation scheme (PTAS)
for linear programs by Garg and Köneman.

1 Introduction

Energy efficiency is a central topic on the routing of ad-hoc networks. When
discussing wireless networks, it is obivious that the situation becomes much
more flexible than in the case of wired networks. The transmission between two
nodes can happen either directly or by using intermediate nodes relaying the
packets.

It is assumed that the nodes have an adjustable transmission power and an
omnidirectional antenna and their position is static. Power required to create a
connection between nodes depends on the geometry in which the nodes lie and a
node-dependent transmission efficiency. The nodes can adjust their transmission
power in order for the network to adhere to a given connectivity constraint and
to maximize a nodes lifetime.

The problem consists of a weighted graph G = (V,E, c), where c : E →
R

+ is the power requirement function defined on the set of edges E. A power
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assignment function p : V → R
+ is a function from the vertices V . An edge

(u, v) is supported by the power assignment p if p(u) ≥ c(u, v). The supported
subgraph H of G called the transmission graph consists of the supported edges
of the graph G. The following network connectivity constraints Q of H are
considered.

(1) Strong connectivity when H is strongly connected

(2) symmetric connectivity when the undirected graph having an edge (u, v)
iff H has both edges (u, v) and (v, u) must be connected

(3) broadcast (resp. multicast) from a root r ∈ V , when H contains a directed
spanning tree rooted at r (resp. directed Steiner tree for given subset of
nodes rooted at r).

1.1 Problem Definitions

The paper discusses two problem classes, the Power Assignment problem and
the Network Lifetime problem. The Power Assignment problem is defined as
follows.

Definition 1 Given a power requrement graph G = (V,E, c) and a connectiv-
ity constraint Q, The Power Assignment problem is the problem of finding the
minimum power assignment function p : V → R

+ of the minimun total power
∑

v∈V p(v) such that the supported subgraph H satisfies the given connectivity
constraint Q.

An equivalent formulation of the Power Assignment problem is the following.
Given a directed spanning subgraph H, define the power of a vertex u as pH(u) =
max(u,v)∈E(H) c(u, v) and the power of H as p(H) =

∑

u∈V pH(u). The problem
then reduces to finding the minimal H satisfying the constraint Q minimizing
p(H).

The power assignment problem is a practically interesting problem but it
does not take into account the possibly heterogeneous initial battery supply of
the nodes or the possibility of dynamically readjusting the power assignment.
To answer to the needs of these constraints, the paper introduces the Network
Lifetime problem. In the problem, an initial battery supply b(v) : V → R

+ is
defined on the nodes and the battery function is reduced by amount of t·p(v) for
each time period t when the node transmits with power p(v). A Power Schedule
PT is a set of pairs (pi, ti), i ∈ {1, . . . ,m} of power assignment functions pi and
time periods ti during which the power assignments are used. Power schedule
PT is feasible if the total amount of energy used by each node v on the whole
schedule does not exceed its initial battery supply b(v), that is,

∑m

i=1 ti ·pi(v) ≤
b(v) ∀v ∈ V . The problem is defined as follows.

Definition 2 Given a power requirement graph G = (V,E, c), an initial battery
supply b : V → R

+ and a connectivity constraint Q, find a feasible power
schedule PT = {(p1, t1), . . . , (pm, tm) of the maximum total time

∑m

i=1 ti such
that for each power assignment pi, the supported subgraph H satisfies the given
connectivity constraint Q.
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Table 1: Approximation ratios and computational complexities in the asymmet-
ric case

Connectivity constraint Upper bound Lower bound

Strong connectivity 3 + 2 ln(n − 1) SCH

Broadcast 2 + 2 ln(n − 1) SCH
Multicast DST DSTH

Symmetric connectivity 2 + 2 ln(n − 1) SCH

Table 2: Approximation ratios and computational complexities in the Euclidean
with efficiency case

Connectivity constraint Upper bound Lower bound

Strong connectivity 3 + 2 ln(n − 1) NPH
Broadcast 2 + 2 ln(n − 1) NPH
Multicast DST NPH
Symmetric Connectivity 11.73 NPH

Reformulation of the problem gives the following. Each directed subgraph H
satisfying the constraint Q is assigned a real variable α(H) ≤ 0 and the objective
is to maximize

∑

H α(H) while having
∑

H pT (u)α(H) ≤ b(u) ∀u ∈ V .
In addition to the general graph G, three important special cases are studied.

(1) Symmetric case, where c(u, v) = c(v, u)

(2) Euclidean case, where c(u, v) = d(u, v)κ, where d(u, v) is the Euclidean
distance between nodes u and v and κ is the signal attenuation constant,
between 2 and 5, and κ is the same for all edges

(3) Single line case, which is a subclass of Euclidean case, where all nodes lie
on a single line

The model includes also a Transmission Efficiency e : V → R
+ defined on

the nodes v ∈ V . This function constructs a new asymmetric graph G′ from the
power requirement graph G by redefining the cost c as c′(u, v) = c(u, v)/e(u).

Tables 1, 2 and 3 summarize the results given in the paper for asymmetric,
Euclidean with efficiency and symmetric costs respectively. The new results are
marked with boldface. Notation SCH means that set cover reduces to the
problem, DSTH means that directed Steiner tree reduces approximation
preserving to the problem and DST means that the problem reduces approxi-
mation preserving to directed Steiner tree. NPH refers to NP-hard and
MAXSNPH refers to maxsnp-hard problems.

In the Upper bound -column the tables give the asymptotic approximation
ratio and Lower bound gives the computational complexity of the full problem.
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Table 3: Approximation ratios and computational complexitites in the symmet-
ric case

Connectivity constraint Upper bound Lower bound

Strong connectivity 2 MAXSNP
Broadcast 2 + 2 ln(n − 1) SCH
Multicast O(lnn) SCH
Symmetric connectivity 5

3 + ε MAXSNPH

2 Algorithms for Asymmetric Power Require-

ments

The algorithm works by adding structure to the problem greedily. The iteration
i starts by a directed subgraph Hi seen as a set of arcs with vertex set V . The
strongly connected components of Hi which do not contain the root are the
unhit components of the graph. An arbitrary node from an unhit component is
called a representative of the unhit component. The algorithm iterates until no
unhit components are found. The structures added to the problem are spiders
defined below. The best spider is one that gives the biggest reduction in the
number of unhit components divided by the weight of the spider. The next
graph Hi+1 is constructed by adding the spider (seen as a set of arcs) to Hi.

Definition 3 A Spider is a directed graph constisting of one vertex called head
and a set of directed paths (called feet) of the spider. The definition allows legs
to share vertices and arcs. The weight of the spider S, denoted by w(S) is the
maximum cost of the arcs leaving the head plus the sum of costs of legs, where
the cost of a leg is the sum of the costs of its arcs without the arc leaving the
head

A figure of a spider is given in Figure 1
The weight of a spider S can be higher than p(S) as the legs can share

vertices and for those vertices the sum (as opposed to the maximum) of the
costs contribute to the weight.

Definition 4 The shrink factor, sf(S) of a spider S with head h is either the
number of representatives among its feet if h is reachable (where every vertex is
reachable from itself) from the root or if h is not reachable from any of its feet.
Otherwise sf(S) is the number of representatives among its feet minus one.

The algorithm is given in Algorithm 1.
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Figure 1: A spider

function greedy-broadcast(G, r)
H := ∅
while H has at least one unhit component

Find the spider S minimizing w(S)/sf(S) w.r.t H
H := H ∪ S

end while

return H

Algorithm 1: The greedy algorithm for Min-Power Broadcast with asymmetric
power requirements

Let u(H) be the amount of unhit component in the graph H. Then the
following holds.

Lemma 1 For a spider S, u(Hi ∪ S) ≤ u(Hi) − sf(S).

Fact 1 Given a spider S, p(Hi ∪ S) ≤ p(Hi) + w(S).

A method for finding the spider minimizing the ratio of height and shrink
factor is given in [1].

Let OPT be the optimal solution for the Min-Power Broadcast with asym-
metric power requirements. Then the following holds.

Lemma 2 (Existence of a good spider) Given any graph Hi and a set of rep-

resentatives obtained from Hi, there is a spider S such that w(S)
sf(S) ≤ 2 OPT

u(Hi)
.

The proof is given in [1]

Theorem 1 The algorithm in Algorithm 1 has approximation ratio 2+2 ln(n−
1).

The proof is given in [1]
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Table 4: Approximation ratios for κ ∈ {2, 3, 4, 5} for the Min-Power Symmetric
Connectivity in the Euclidean-with-Efficiency case

κ r ratio

2 1.32 11.73
3 1.15 20.99
4 1.08 38.49
5 1.05 72.72

2.1 Min-Power Strong Connectivity with Asymmetric Pow-

er Requirements

The case for strong connectivity is similar to the case of broadcast. When v is an
arbitrary vertex in a graph, an optimum solution of power OPT consists of an
outgoing arborescence Aout rooted at v with p(Aout) ≤ OPT and an incoming
arborescence Ain also ≤ OPT.

The broadcast algorithm in previous section produces an outgoing arbores-
cence Bout ≤ (2+2 ln(n−1))Aout and Edmonds’ algorithm produces a minimum
cost arborescence Bin rooted at v with the property that c(Bin) ≤ c(Ain). As
c(Ain) = p(Ain) ≤ OPT, we have that p(Bout ∪ Bin) ≤ p(Bout) + c(Bin) ≤
2(1 + ln(n − 1))p(Aout) + c(Ain) ≤ (2 ln(n − 1) + 3)OPT. From this we have

Theorem 2 There is a 2 ln(n− 1)+3-approximation algorithm for strong con-
nectivity with asymmetric power requirements.

3 Min-Power Symmetric Connectivity in the Eucl-

idean-with-Efficiency Case

In the Euclidean with Efficiency case a cost function c(u, v) is given by the
distance d(u, v) of the vertices and the transmission efficiency e(u) of the trans-
mitting node u by

c : (u, v) 7→
d(u, v)κ

e(u)

Theorem 3 Let w(u, v) = c(u, v) + c(v, u). Compute the minimum spanning
tree M in this resulting weighted undirected graph. The resulting tree M has

p(M) ≤ min
r>1

(

2κ + (r + 1)κ +
rκ

rκ − 1

)

OPT,

where OPT is the power of the optimum tree.

The proof is partially presented in [1]. Numerically the approximation ratios
are presented in Table 4
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4 Network Lifetime

Network Lifetime gets as input a power requrements graph G = (V,E, c) and a
battery supply b : V → R

+. A set S of directed graphs is given implicitly by
the connectivity constraint Q. |S| is in general exponential in |V |. The problem
is to maximize

∑

H∈S

xH

while maintaining

∑

H∈S

pH(v)xH ≤ b(v), ∀v ∈ V, xH ≥ 0.

Theorem 4 Even in the special case when all the nodes have the same bat-
tery supply, the Network Lifetime for Symmetric Connectivity (or Broadcast or
Strong Connectivity) problem is NP-hard in the symmetric power requirements
case.

The proof is outlined in [1].
Using an alteration of the Garg-Köneman -(1+ ε)-approximation algorithm,

the algorithm for minimum-power assignment can be used to prove the following
theorem.

Theorem 5 For a connectivity constraint and a case of the power requirements
graph, given an f-approximation algorithm F for Power Assignment with the
given connectivity constraint Q and the case of the power requirements graph
with added non-uniform efficiency, there is a (1 + ε)f-approximation algorithm
for the corresponding Network Lifetime problem.

The Garg-Köneman Algorithm variation is given in [1].

5 Future work

The authors believe that the following results hold:

(1) Min-Power Steiner Symmetric Connectivity with asymmetric power re-
quirements can be approximated with a O(logn) ratio as suggested in the
introduction.

(2) A (1.35 + ε) ln n-algorithm for any ε > 0 exists for Min-Power Symmet-
ric Connectivity, Min-Power Stiener Symmetric Connectivity, Min-Power
Broadcast and Min-Power Strong Connnectivity.

The existence of efficient exact or constant factor approximation algorithms
for Min-Power Broadcast or Min-Power Strong Connectivity in the Euclidean
geometry with efficiency is left open. Also the NP-hardness of Network Life in
Euclidean case is not known.

An interesting practical problem where there is defined a sensitivity s(v)

giving c(u, v) = d(u,v)κ

s(v) could be more studied.
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