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Abstract

This paper presents a brief summary of the given article. An introduc-
tion to the subject of topology control in sensor networks is presented. The
paper presents two methods for generating algorithms for topology control
with minimization objectives in mind. The paper also shows how some
previously developed algorithms can be generated using these methods as
well. In general, these methods are for a specific kind of graph, which will
be explained further. The paper also presents some experimental results,
which will be summarized, analyzed, and critiqued.

1 Introduction

1.1 Goals

The subject of topology control in regards to ad hoc and sensor networks has been
widely discussed as of late. Topology control is the idea of giving transmission
powers to nodes of a network in a way that the network will behave in a certain
fashion. This can be modeled abstractly by means of a directed graph. This is
studied profusely in the sensor networks arena because of the fact that in some
instances the nodes of a sensor network have a very limited amount of power.

So what ’certain fashion’ would be desirable? In general, one might want to
limit the node communication radius or maybe have a certain level of connectivity.
In the paper[1], there were a couple of properties that were researched in depth.
These properties are minimizing the maximum power assigned to a node, and
minimizing the total power of all nodes. These are abbreviated respectively as
MAXP and TOTALP .
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1.2 Methods and Notation

A directed graph that models a given sensor network can be constructed using the
following method. Each node or transceiver is considered a vertex in the graph.
Each pair (u, v) of nodes has an associated transmission power threshold (tpt),
or p(u, v). This means that if node u can only transmit successfully to node v if
its current power level is at least p(u, v). If u can transmit to v, then a directed
edge is inserted from vertex u to v. This is done for every transceiver, and the
end result is a directed graph which models the network.

The general form for any topology control problem is denoted as (M, P, O).
M represents the graph model, in this context meaning directed or undirected. P
is the wanted graph property, for example k-connectivity, which is obviously the
smallest number of vertices that when removed yields a disconnected graph (e.g.
a tree is 1-connected, a cycle 2-connected, etc). O is the minimization objective,
which in the paper is limited to MAXP and TOTALP .

Properties P of a specific type, known as monotone, are at the heart of this
paper. A monotone property is one that holds even when the tpt of a node is
increased. Obviously when tpt is increased, for our graph representation this
means more edges are getting added. An example of a monotone property is
k-connectivity. An example of a non-monotone property is acyclic.

When approximation algorithms are used, two factors are studied. The first
is the performance guarantee, or ρ. This means that the solution is within a
multiplicative factor of ρ of the optimal solution. A polynomial time approxima-
tion scheme (PTAS) is produced when given a problem instance, an accuracy
requirement ε, a solution is produced that is within a factor of 1 + ε of optimal.

Basically, this paper presents a method for generating algorithms for the de-
scribed type of topology control problems. Once the method of generation is
established, some example algorithms are given. This is done for both MAXP
and TOTALP . Limiting properties to monotone can produce non NP-hard al-
gorithms which can be very efficient.

2 Minimizing MAXP

2.1 Algorithm for monotone and polynomial time testable
properties

First, the authors provide some detail of why monotone properties are desirable.
Lemma 4.1 states: For any instance of (Undir, P, MAXP) and (Dir, P, MAXP)
where P is monotone, an optimal solution exists where all nodes have the same
tpt. This is easily provable, since the highest tpt of any node in the graph can
obviously be assigned to the rest of the nodes and have P still hold, since it
is monotone (This is obviously a very inefficient way of doing things, but let’s
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disregard that fact for a few moments).
Theorem 4.1 is stated next, which reads: For any monotone and polynomial

time testable graph property P, the problem (Undir, P, MAXP) and (Dir, P,
MAXP) can be solved in polynomial time. This theorem is also easily provable,
and is presented. With Lemma 4.1, we know there is an optimal solution with
all nodes having equal tpt. For a given node u, n − 1 different tpt values need
to be considered. So for all nodes, this makes n(n − 1), so O(n2). To find the
solution, the O(n2) values are sorted, then binary searched O(logn). FP (n) is
the time needed when testing if P holds. Testing is polynomial time, which yields
a running time of O((n2 + FP (n))logn), which is obviously polynomial.

So, this seems like a good, solid method. An example is given for the
problem (Undir, 2-Connected, MAXP). A O(n2) method is known for testing
2-Connectivity, so an algorithm with running time of O(n2logn) is produced.
Obviously this method can only be applied to a very specific type of sensor net-
work.

The next idea presented in the paper is similar to the one above, but now
the problem is looking at properties P that are not polynomial time testable.
This yields an approximation algorithm. So formally, (Undir, P, MAXP) and
(Dir, P, MAXP) with any arbitrary P can be approximated within factor 1 +
ε in O((n2 + FP (n))loglog(max/min)), where max/min are the max and min
tpt values. A proof is presented which is very logical. an important thing to
note here is that when the max/min ratio is much smaller than 2n, the property
testing portion is smaller than O(logn).

2.2 Why Just Monotone?

The authors proceed to present an example of how non-monotone properties
such as G is a tree render the problem NP-hard. The proof is very extensive
and involves a reduction from Exact Cover by 3-Sets (X3C), which is NP-hard.
Basically, the point is that restricting to monotone properties is the only way to
guarantee efficient algorithm generation using these ideas.

2.3 The Disadvantages

As mentioned earlier, assigning the maximum tpt to all the nodes is really not
practical. A truly practical solution would minimize the number of nodes that
have the maximum tpt. Unfortunately, adding this additional requirement renders
the problem NP-Hard. So basically, these methods presented only work on very
specific types of sensor networks, and don’t really work all that well.
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3 Minimizing TOTALP

3.1 Approximation Algorithm for Minimizing TOTALP

In the next section, the authors analyze the TOTALP problem. They jump right
into approximation algorithms because of the fact that even seemingly simple
properties, such as 1-connectivity are NP-Hard. For this algorithm, the property
P is also monotone (and at first polynomial time testable, but later on not), and
the tpt values are symmetric, meaning abstractly that the graph is undirected.
A general outline of the algorithm called Gen-Total-Power (GTP) is given as
follows from the text:
Input: A problem instance I of (Undir, P, TOTALP ).
Output: A tpt π(u) for each node where P holds and TOTALP is minimized.
Steps:

1. From I, construct the complete graph Gc(V, Ec). Weights are given by the
tpt.

2. Construct a subgraph G′(V, E ′) of Gc where G′ satisfies P and the sum of
all the edge weights in E ′ is minimized as compared to all other subgraphs
Gc.

3. For every node u, assign a tpt π(u) which equals the largest edge weight
incident with u.

This is nothing fancy. Obviously, the choke point is in step 2. The next proof
provides a performance guarantee for the above algorithm. Given Gc(V, Ec), we
have a subgraph H(V, EH) with min TOTALP and W (H) equal to the total
weight. Step 2 produces subgraph G′(V, E ′) of G. So given α > 0 and β > 0
where W(H)≤ αOPT(I) and W (G′) ≤ βW (H), it follows GTP(I)≤ 2αβOPT(I),
meaning performance guarantee is 2αβ.

3.2 Using GTP on Existing Algorithms

This is illustrated with the problem (Undir,1-Connected,TOTALP) using a pre-
existing algorithm, which yields a performance guarantee of 2. The only example
provided simply shows how this pre-existing algorithm can be derived using the
method above, so it’s nothing new really.

3.3 Using GTP to Make ”New” Algorithms

In the proofs that follow in the paper, the problem (Undir,2-Node Connected,TOTALP)
is analyzed. The authors use a pre-existing approximation algorithm with per-
formance guarantee of (2 + 1/n), so β <= (2 + 1/n) in Step 2 of GTP , so their
use of the term ”New” is maybe a little off.
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They show that from Step 1’s Gc(V, Ec), there is a Step 2 subgraph G′(V, E ′)
where G’ satisfies P (2-connected) and TOTALP upper bound is (2−2/n)OPT (I),
and we have α ≤ (2 − 2/n). So combining both of these ideas, the performance
guarantee is 2(2− 2/n)(2 + 1/n) which as n grows approaches 8. This is ex-
tended into an algorithm for (Undir,2-Edge Connected,TOTALP) with perfor-
mance guarantee of 8(1− 1/n) which also approaches 8.

4 Results and Analysis

4.1 Setup

In their experimental results, the authors have compared their (Undir,2-Node
Connected,TOTALP) algorithm with an existing (Undir,2-Node Connected,MAXP)
which minimizes the power levels of each node. This is done since their TOTALP
algorithm is the only one in existence.

Radio propagation is constructed to emulate 2.4GHz. The node density is
varied from 0.625 nodes/sq mile to 6.26 nodes/sq mile in a 4x4 mile area (10-
100 nodes). They are placed uniformly as well as skewed. Both average and
maximum tpt values are measured after trial runs.

4.2 Results

For uniform distribution, with average power TOTALP outperforms MAXP by
5% to 19% which increases with density. However, the max power with TOTALP
is 14%-37% higher. MAXP is 60%-83% of max while with TOTALP it is 39%-
70% of max, decreasing as density increases. This is to be expected, as you would
think that average power would decrease faster than maximum power.

For skewed distribution, with average power TOTALP outperforms MAXP
by 6% to 25%, and the difference between max and average is higher. MAXP
is 40%-76% of max while with TOTALP it is 25%-64% of max. So with skewed
distribution, TOTALP gives a higher maximum power but a lower average power.
This is also to be expected, since more dense areas have much lower power levels
in regards to average power.

Node degree was also tested. TOTALP yielded average degree of 2.73. Max
and average degrees were consistently lower with TOTALP than with MAXP .
They state that smaller is generally better.

Experiments were also conducted on the TRANSIMS network, which is
much more realistic. Instead of transmission power, transmission range was mea-
sured, due to the density of this network. The results were consistent with those
given above.
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5 Conclusion

This paper was very interesting to read. It contained an abundance of theory,
with a touch of practice. The methods presented for MAXP minimization are
not really practical. Other algorithms exist that have much better features (min-
imization of max power of every nodes) with the same running time, for example
the MAXP algorithm that TOTALP was compared to in the second half of the
paper.

The TOTALP algorithm presented is much more interesting. The experi-
ment results seem favorable, however with no real competitors to compare this
algorithm with, I think the results provided can be misleading. However, better
to compare apples with oranges than nothing at all. It will be interesting to
compare this algorithm with future algorithms that have the same minimization
objectives in mind.
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