
'

&

$

%

Constraint Propagation Algorithms

• Introduction

• General propagation algorithms

• Algorithms for partial orderings

• Algorithms for Cartesian products of partial orderings

• Partial orders → CSPs

• Node consistency algorithm

• Arc consistency algorithm

1



'

&

$

%

Generic procedure Solve

Var continue: BOOLEAN;

continue := TRUE;

While continue And NOT Happy Do

Preprocess;

Constraint Propagation;

If NOT Happy Then

If Atomic Then

continue:=FALSE

Else

Split;

Proceed By Cases

End

End

End

2



'

&

$

%

Preliminaries - Set Theory

• Partial order is a pair (D,v), where D is a set and v is a reflexive,
antisymmetric and transitive relation on D.

• In strict partial order v is antireflexive.

• Partial order is well-founded if no infinite sequence of elements
d0, d1, . . . of D exists such that di+1 @ di.

• Example: (P(D),⊇) is a well-founded partial order.
P(D) is the powerset of set D and ⊇ the reversed.

3



'

&

$

%

Partial Order - Definitions

• Sequence d0, d1, · · · ∈ D eventually stabilises at d if for some
j ≥ 0, di = d∀i ≥ j.

• Iteration of F is a sequence d0, d1, . . . from D defined inductively
d0 := ⊥

dj := Fnj
(dj−1)

where j > 0 and nj is an element of [1 . . . k].

• Lemma on stabilisation

– Consider a partial ordering (D,v) with the least element ⊥ and a
finite set F of monotonic functions on D.

– Suppose than an iteration of F eventually stabilises at a common
fixpoint d of the functions from F . Then d is the least common
fixed point of the functions from F .

4



'

&

$

%

Commutativity

• Lemma on Commutativity

– Partial ordering (D,v) with the least element ⊥. Let
F := {f1, . . . , fk} be a finite set of functions on D such that

∗ each f ∈ F is monotonic and idempotent
∗ all f and g ∈ F commute

– then for each permutation
π[1 . . . k] → [1 . . . k]fπ(i)fπ(2) · · · fπ(k)(⊥) is the least common
fixpoint of the functions from F .

• Proof: by commutativity fπ(i)fπ(2) · · · fπ(k) = f1f2 · · · fk(⊥)

• fif1f2 · · · fk(⊥) = f1fif2 · · · fk(⊥) = · · · =

f1f2 · · · fifi · · · fk(⊥) = f1f2 · · · fk(⊥).

5



'

&

$

%

Semi-Commutativity

• Lemma: Consider a partial ordering (D,v) with the least element ⊥.
Let F := f1, . . . fk be a finite sequence of functions on D such that

– each fi is monotonic, inflationary and idempotent

– each fi semi-commutes with fj for i > j that is
fifj(x) v fjfi(x) for all x.

• Then f1f2 · · · fk(⊥) is the least common fixpoint of the functions
from F .

6



'

&

$

%

Least Fixed Point

• Lemma: Any iteration F on a finite partial ordering that is regular
eventually stabilises at the least common fixpoint of the functions
from F .

• F is regular if for all f ∈ F and m ≥ 0 if f(dm) 6= dm, then f is
activated at some step > m.

7



'

&

$

%

Direct Iteration Algorithm

d := ⊥;
G := F ;

While G 6= ∅ Do
choose g ∈ G;

d := g(d);

G := G − {g}

End

• Direct Iteration algorithm terminates and computes in d the least
common fixpoint of the functions from F .

• F is a finite set of monotonic and idempotent functions on D that
commute with each other.

• This is direct consequence of Commutativity Lemma.

8



'

&

$

%

Generic Iteration Algorithm

d := ⊥;

G := F ;

While G 6= ∅ Do
choose g ∈ G;

If d 6= g(d) Then
G := G

⋃
update(G, g, d);

d := g(d)

Else
G := G − {g}

End
End

• where for all G, g, d: A

{f ∈ F − G|f(d) = d
∧

fg(d) 6= g(d)} ⊆ update(G, g, d).

9



'

&

$

%

Generic Iteration Algorithm Continued

• Theorem: Every execution of the Generic Iteration Algorithm
terminates and computes in d the least common fixpoint of the
functions from F. Here F is a finite set of monotonic and inflationary
functions on set D with partial ordering v.

• Proof is based on lexicographical ordering of the strict partial
orderings (D,v) and (N , <), defined on the elements of D ×N by
(d1, n1) <lex (d2, n2) iff d1 A d2 or (d1 = d2 and n1 < n2).

10



'

&

$

%

Algorithms for Cartesian Products of Partial Orderings

• Definition: Cartesian product (D,v) of partial orderings (Di,vi) is
a partial order:

– D = D1 × · · · × Dn

– (d1, . . . , dn) v (e1, . . . , en) iff di vi ei for all i ∈ [1 . . . n] and
(d1, . . . dn) and (e1, . . . , en) ∈ D

• A scheme s is a sequence of elements from [1 . . . n].

• (Ds,vs) is the projection of D to the elements of the scheme.

• A function f is with scheme s if it depends only on elements that are
in s.

• f+ is extension of f to all elements of D.

11



'

&

$

%

Direct Iteration for Compound Domains Algorithm

d := (⊥1 . . .⊥n);
G := F0;
While G 6= ∅ Do
choose g ∈ G

d[s] := g(d[s]), where s is the scheme of g
End

12



'

&

$

%

Direct Iteration for Compound Domains

• Suppose that (D,v) is a partial ordering that is a Cartesian product
of n partial orderings, each with the least element ⊥i with
i ∈ [1 . . . n]. Let F0 be a finite set of functions with schemes.

• Suppose that all functions in F0 are monotonic, idempotent and
commute with each other. Then the DICD algorithm terminates and
computes in d the least common fixpoint of the functions from
F := {f+|f ∈ F0}.

13



'

&

$

%

From partial orderings to CSPs

• Partial orderings with least elements

– Cartesian product of the partial orderings (P(Di),⊇), and
(P(Ci),⊆).

– The domain ordering is used for node, arc, hyper-arc and
directional arc consistency. The constraint ordering is used for
path, directional path, k-, and relational consistency notions.

• Monotonic and inflationary functions correspond to the domain
reduction rules and specific transformation rules used in Chapter 5 to
characterise the local consistency notions.

• Common fixpoints correspond to the CSPs that satisfy the considered
notion of local consistency.

14



'

&

$

%

Node Consistency

• The rule: 〈C;x∈D〉
〈C;x∈C

T

D〉 .

• Same rule: π0(X) := X
⋂

C. π+
0 is a function on

P(D1) × · · · P(Dn).

• Lemma: A CSP 〈C; x1 ∈ D1, . . . , xn ∈ D〉 > is node consistent iff
(D1, . . . , Dn) is a common fixpoint of all functions π+

0 associated
with the unary constraints from C.
All functions π0 associated with a unary constraint C are

– monotonic w.r.t. the componentwise ordering ⊇

– idempotent

– commute with each other

15



'

&

$

%

Node Consistency Algorithm

S0 := {C|C is a unary constraint from C};

S := S0;

While S 6= ∅ Do
choose C ∈ S; suppose C is on xi;
Di := C

⋂
Di; %apply the function π0 associated with C

S := S − {C}

End

16



'

&

$

%

Arc Consistency

Arc Consistency 1
〈C; x ∈ Dx, y ∈ Dy〉

〈C; x ∈ D′
x, y ∈ Dy〉

(1)

• This rule can be viewed as a function π1 on P(Dx) ×P(Dy):

π1(X, Y ) := (X ′, Y ) (2)

where X ′ := {a ∈ X|∃b ∈ Y (a, b) ∈ C}.

• The same applies to rule 2 in which Y is reduced instead of X.

17



'

&

$

%

Arc Consistency

• A CSP 〈C; x1 ∈ D1, . . . , xn ∈ Dn〉 is arc consistent iff
(D1, . . . , Dn) is a common fixpointt of all functions π+

1 and π+
2

associated with the binary constraints from C.

• Each projection function πi associated with binary constraint C is

– inflationary w.r.t. the componentwise ordering ⊇.

– monotonic w.r.t. the componentwise ordering ⊇.

18



'

&

$

%

Arc Consistency Algorithm

S0 :=

{C|C is a binary constraint from C}
⋃
{CT |C is a binary constraint from };

S := S0;

While S 6= ∅ Do choose C ∈ S; suppose C is on xi, xj ;
Di := {a ∈ Di}|∃b ∈ Dj(a, b) ∈ C}; % apply π1 associated with C
If Di changed Then
S := S

⋃
{C ′ ∈ S0|C ′ is on y, z where y is xi or z is xi}

Else
S := S − {C}

End
End

19



'

&

$

%

Conclusions

• CSPs can be studied as partial orders and thus generic algorithms that
produce least fixed points for partial orders are useful for CSPs

• The least common fixed point of the partial orders corresponds to the
maximal domains that satisfy the studied local consistency notion.

20



'

&

$

%

Harjoitustehtävät

1. Tarkastellaan rajoiteongelmaa
〈x + y ≤ 9, x · y > 5, x < 10, y > 8; x ∈ [0 . . . 20], y ∈ [0 . . . 20]〉

(a) Käytä kirjan solmukonsistenssialgoritmia (7.3) ja tee annetusta
rajoiteongelmasta solmukonsistentti.

(b) Käytä kirjan kaarikonsistenssialgoritmia (7.4) ja tee annetusta
rajoiteongelmasta kaarikonsistentti.
Huom. esitä ratkaisussasi algoritmin toiminta vaihe vaiheelta.

2. Kirjan tehtävä 7.4
Todista solmukonsistenssilemma

21


