Constraint Propagation Algorithms

- Introduction
- General propagation algorithms
- Algorithms for partial orderings
- Algorithms for Cartesian products of partial orderings
- Partial orders $\rightarrow CSPs$
- Node consistency algorithm
- Arc consistency algorithm

Generic procedure Solve

```
Var continue: BOOLEAN;
continue := TRUE;
While continue And NOT Happy Do
  Preprocess;
  Constraint Propagation;
  If NOT Happy Then
    If Atomic Then
      continue:=FALSE
    Else
      Split;
      Proceed By Cases
    End
  End
End
```

Preliminaries - Set Theory

- Partial order is a pair (D, \sqsubseteq) , where D is a set and \sqsubseteq is a reflexive, antisymmetric and transitive relation on D.
- In strict partial order \sqsubseteq is antireflexive.
- Partial order is well-founded if no infinite sequence of elements d_0, d_1, \ldots of D exists such that $d_{i+1} \sqsubset d_i$.
- Example: (P(D), ⊇) is a well-founded partial order.
 P(D) is the powerset of set D and ⊇ the reversed.

Partial Order - Definitions

- Sequence d₀, d₁, · · · ∈ D eventually stabilises at d if for some j ≥ 0, d_i = d∀i ≥ j.
- Iteration of *F* is a sequence d₀, d₁,... from D defined inductively d₀ := ⊥ d_j := F_{n_j}(d_{j-1}) where j > 0 and n_j is an element of [1...k].
- Lemma on stabilisation
 - Consider a partial ordering (D, \sqsubseteq) with the least element \bot and a finite set *F* of monotonic functions on D.
 - Suppose than an iteration of F eventually stabilises at a common fixpoint d of the functions from F. Then d is the least common fixed point of the functions from F.

Commutativity

- Lemma on Commutativity
 - Partial ordering (D, \sqsubseteq) with the least element \bot . Let
 - $F := \{f_1, \ldots, f_k\}$ be a finite set of functions on D such that
 - $* \operatorname{each} f \in F$ is monotonic and idempotent
 - * all f and $g \in F$ commute
 - then for each permutation $\pi[1 \dots k] \to [1 \dots k] f_{\pi(i)} f_{\pi(2)} \cdots f_{\pi(k)}(\perp)$ is the least common fixpoint of the functions from *F*.
- Proof: by commutativity $f_{\pi(i)}f_{\pi(2)}\cdots f_{\pi(k)} = f_1f_2\cdots f_k(\bot)$
- $f_i f_1 f_2 \cdots f_k(\bot) = f_1 f_i f_2 \cdots f_k(\bot) = \cdots =$ $f_1 f_2 \cdots f_i f_i \cdots f_k(\bot) = f_1 f_2 \cdots f_k(\bot).$

Semi-Commutativity

- Lemma: Consider a partial ordering (D, \sqsubseteq) with the least element \bot . Let $F := f_1, \ldots, f_k$ be a finite sequence of functions on D such that
 - each f_i is monotonic, inflationary and idempotent
 - each f_i semi-commutes with f_j for i > j that is $f_i f_j(x) \sqsubseteq f_j f_i(x)$ for all x.
- Then f₁f₂ · · · f_k(⊥) is the least common fixpoint of the functions from F.

Least Fixed Point

- Lemma: Any iteration F on a finite partial ordering that is regular eventually stabilises at the least common fixpoint of the functions from F.
- F is regular if for all $f \in F$ and $m \ge 0$ if $f(d_m) \ne d_m$, then f is activated at some step > m.

Direct Iteration Algorithm

 $d := \bot;$ G := F;While $G \neq \emptyset$ Do choose $g \in G;$ d := g(d); $G := G - \{g\}$ End

- Direct Iteration algorithm terminates and computes in d the least common fixpoint of the functions from F.
- F is a finite set of monotonic and idempotent functions on D that commute with each other.
- This is direct consequence of Commutativity Lemma.

Generic Iteration Algorithm

 $d := \bot;$ G := F;While $G \neq \emptyset$ Do choose $g \in G$; If $d \neq g(d)$ Then $G := G \bigcup update(G, g, d);$ d := g(d)Else $G := G - \{g\}$ End End

• where for all G, g, d: A $\{f \in F - G | f(d) = d \land fg(d) \neq g(d)\} \subseteq update(G, g, d).$ Generic Iteration Algorithm Continued

- Theorem: Every execution of the Generic Iteration Algorithm terminates and computes in d the least common fixpoint of the functions from F. Here F is a finite set of monotonic and inflationary functions on set D with partial ordering ⊑.
- Proof is based on lexicographical ordering of the strict partial orderings (D, ⊑) and (N, <), defined on the elements of D × N by (d₁, n₁) <_{lex} (d₂, n₂) iff d₁ ⊐ d₂ or (d₁ = d₂ and n₁ < n₂).

Algorithms for Cartesian Products of Partial Orderings

- Definition: Cartesian product (D, ⊑) of partial orderings (D_i, ⊑_i) is a partial order:
 - $D = D_1 \times \cdots \times D_n$
 - $(d_1, \ldots, d_n) \sqsubseteq (e_1, \ldots, e_n)$ iff $d_i \sqsubseteq_i e_i$ for all $i \in [1 \ldots n]$ and (d_1, \ldots, d_n) and $(e_1, \ldots, e_n) \in D$
- A scheme s is a sequence of elements from $[1 \dots n]$.
- (D_s, \sqsubseteq_s) is the projection of D to the elements of the scheme.
- A function f is with scheme s if it depends only on elements that are in s.
- f^+ is extension of f to all elements of D.

Direct Iteration for Compound Domains Algorithm

```
d := (\bot_1 \dots \bot_n);

G := F_0;

While G \neq \emptyset Do

choose g \in G

d[s] := g(d[s]), where s is the scheme of g

End
```

Direct Iteration for Compound Domains

- Suppose that (D, ⊑) is a partial ordering that is a Cartesian product of n partial orderings, each with the least element ⊥_i with i ∈ [1...n]. Let F₀ be a finite set of functions with schemes.
- Suppose that all functions in F₀ are monotonic, idempotent and commute with each other. Then the DICD algorithm terminates and computes in d the least common fixpoint of the functions from F := {f⁺|f ∈ F₀}.

From partial orderings to CSPs

- Partial orderings with least elements
 - Cartesian product of the partial orderings $(\mathcal{P}(D_i), \supseteq)$, and $(\mathcal{P}(C_i), \subseteq)$.
 - The domain ordering is used for node, arc, hyper-arc and directional arc consistency. The constraint ordering is used for path, directional path, k-, and relational consistency notions.
- Monotonic and inflationary functions correspond to the domain reduction rules and specific transformation rules used in Chapter 5 to characterise the local consistency notions.
- Common fixpoints correspond to the CSPs that satisfy the considered notion of local consistency.

Node Consistency

- The rule: $\frac{\langle C; x \in D \rangle}{\langle C; x \in C \cap D \rangle}$.
- Same rule: $\pi_0(X) := X \bigcap C$. π_0^+ is a function on $\mathcal{P}(D_1) \times \cdots \mathcal{P}(D_n)$.
- Lemma: A CSP ⟨C; x₁ ∈ D₁,..., x_n ∈ D_⟩ > is node consistent iff (D₁,..., D_n) is a common fixpoint of all functions π⁺₀ associated with the unary constraints from C.

All functions π_0 associated with a unary constraint C are

- monotonic w.r.t. the componentwise ordering \supseteq
- idempotent
- commute with each other

Node Consistency Algorithm

 $S_{0} := \{C | C \text{ is a unary constraint from } C\};$ $S := S_{0};$ While $S \neq \emptyset$ Do choose $C \in S$; suppose C is on x_{i} ; $D_{i} := C \bigcap D_{i};$ % apply the function π_{0} associated with C $S := S - \{C\}$ End

Arc Consistency

Arc Consistency 1

$$\frac{\langle C; x \in D_x, y \in D_y \rangle}{\langle C; x \in D'_x, y \in D_y \rangle} \tag{1}$$

• This rule can be viewed as a function π_1 on $\mathcal{P}(D_x) \times \mathcal{P}(D_y)$:

$$\pi_1(X,Y) := (X',Y)$$
(2)

where $X' := \{a \in X | \exists b \in Y(a, b) \in C\}.$

• The same applies to rule 2 in which Y is reduced instead of X.

Arc Consistency

- A CSP ⟨C; x₁ ∈ D₁,..., x_n ∈ D_n⟩ is arc consistent iff (D₁,..., D_n) is a common fixpoint of all functions π⁺₁ and π⁺₂ associated with the binary constraints from C.
- Each projection function π_i associated with binary constraint C is
 - inflationary w.r.t. the componentwise ordering \supseteq .
 - monotonic w.r.t. the componentwise ordering \supseteq .

Arc Consistency Algorithm

 $S_0 :=$

 $\{C|C \text{ is a binary constraint from } C\} \bigcup \{C^T|C \text{ is a binary constraint from }\};$ $S := S_0;$

While $S \neq \emptyset$ Do choose $C \in S$; suppose C is on x_i, x_j ;

 $D_i := \{a \in D_i\} | \exists b \in D_j(a, b) \in C\}; \% \text{ apply } \pi_1 \text{ associated with } C$

If D_i changed Then

$$S := S \bigcup \{ C' \in S_0 | C' \text{ is on } y, z \text{ where } y \text{ is } x_i \text{ or } z \text{ is } x_i \}$$

Else

 $S := S - \{C\}$

End

End

Conclusions

- CSPs can be studied as partial orders and thus generic algorithms that produce least fixed points for partial orders are useful for CSPs
- The least common fixed point of the partial orders corresponds to the maximal domains that satisfy the studied local consistency notion.

Harjoitustehtävät

1. Tarkastellaan rajoiteongelmaa

 $\langle x+y \leq 9, x \cdot y > 5, x < 10, y > 8; x \in [0 \dots 20], y \in [0 \dots 20] \rangle$

- (a) Käytä kirjan solmukonsistenssialgoritmia (7.3) ja tee annetusta rajoiteongelmasta solmukonsistentti.
- (b) Käytä kirjan kaarikonsistenssialgoritmia (7.4) ja tee annetusta rajoiteongelmasta kaarikonsistentti.Huom. esitä ratkaisussasi algoritmin toiminta vaihe vaiheelta.
- 2. Kirjan tehtävä 7.4

Todista solmukonsistenssilemma