T-79.194 Tietojenkäsittelyteorian seminaari
Linear equalities over reals (cont'd)
Linear inequalities over reals
Mikko Malinen
12th February, 2004
Exercises

Name

1. Consider the following set of linear inequalities:

$$
\begin{align*}
-y & \leq 0 \tag{1}\\
-y-z+2 & \leq x \tag{2}\\
0 & \leq x \tag{3}\\
-y-2 & \leq x \tag{4}\\
y-3 & \leq x \tag{5}\\
x & \leq-2 y+6 \tag{6}
\end{align*}
$$

Apply once the x-ELIMINATION rule (to all possible inequalities in this set). Write down the resulting set of inequalities.

Answer

Using the x-ELIMINATION rule we obtain the following set of inequalities in which x does not appear:

$$
\begin{align*}
-y & \leq 0 \tag{7}\\
-y-z+2 & \leq-2 y+6 \tag{8}\\
0 & \leq-2 y+6 \tag{9}\\
-y-2 & \leq-2 y+6 \tag{10}\\
y-3 & \leq-2 y+6 \tag{11}
\end{align*}
$$

2. Consider the following set of linear inequalities:

$$
\begin{align*}
0 & \leq y \tag{12}\\
-x-y+2 & \leq z \tag{13}\\
0 & \leq x \tag{14}\\
-x-y & \leq 2 \tag{15}\\
-x+y & \leq 3 \tag{16}\\
x+2 y & \leq 6 \tag{17}
\end{align*}
$$

Examine by using Fourier-Motzkin Elimination, whether this set is consistent or not. Write down the details.

Answer

Trasforming each of them to the x-normal form yields the following set:

$$
\begin{align*}
-y & \leq 0 \tag{18}\\
-y-z+2 & \leq x \tag{19}\\
0 & \leq x \tag{20}\\
-y-2 & \leq x \tag{21}\\
y-3 & \leq x \tag{22}\\
x & \leq-2 y+6 \tag{23}
\end{align*}
$$

Using the x-ELIMINATION rule we obtain the following set of inequalities in which x does not appear:

$$
\begin{align*}
-y & \leq 0 \tag{24}\\
-y-z+2 & \leq-2 y+6 \tag{25}\\
0 & \leq-2 y+6 \tag{26}\\
-y-2 & \leq-2 y+6 \tag{27}\\
y-3 & \leq-2 y+6 \tag{28}
\end{align*}
$$

Transforming each of the five inequalities to the y-normal form we now obtain the following set:

$$
\begin{align*}
& 0 \leq y \tag{29}\\
& y \leq z+4 \tag{30}\\
& y \leq 3 \tag{31}\\
& y \leq 8 \tag{32}\\
& y \leq 3 \tag{33}
\end{align*}
$$

Eliminating now y using the y-ELIMINATION rule we obtain the following set of four inequalities:

$$
\begin{align*}
& 0 \leq z+4 \tag{34}\\
& 0 \leq 3 \tag{35}\\
& 0 \leq 8 \tag{36}\\
& 0 \leq 3 \tag{37}
\end{align*}
$$

We can now delete the last three inequalities using the DELETION rule and we end up with a single inequality the z-normal form which is:

$$
-4 \leq z
$$

At this moment we apply the z-ELIMINATION rule. We end up with the empty set. This implies that the original set of inequalities is consistent.

