BE-BB\((k)\): A Hybrid Method for Solving CSPs and COPs

Matti Järvisalo
matti.jarvisalo@hut.fi
April 15, 2004

Motivation (1/2)

- Most CSP solvers apply
 - search or
 - dynamic programming.

- Search:
 - Branch-and-bound (BB) in constraint optimization
 - Relation propagation in constraint satisfaction
 - Worst-case: explore whole search tree; exponential in \(n \)

- Dynamic programming:
 - Sequence of transformations reduce problem size
 - Bucket elimination (BE): basic step variable elimination
 - Worst-case exponential in arity of induced constraints

Outline

- Motivation
- CSPs and COPs
- Branch-and-Bound (BB)
- Bucket elimination (BE)
- Combining BE and BB: BE-BB\((k)\)

Motivation (2/2)

- Idea: Combine BB and BE → get best out of both worlds?
 - Apply variable elimination if induces constraints are of low arity
 - Controlled by parameter \(k \)
 - Else switch to search

- Solution BE-BB\((k)\)
 - worst-case time/space exponential in \(k \)

- Properties:
 - May boost search in constraint satisfaction, no worsening effect
 - Overwhelming advantage on some optimization tasks
CSPs Revisited

Constraint satisfaction problem (CSP):

- $X = \{x_1, \ldots, x_n\}$: set of variables
- $D = \{D_1, \ldots, D_n\}$: set of domains, where $x_i \in D_i$
- $C = \{R_1, \ldots, R_m\}$: set of constraints, where $R \in C$ is a relation over the scope $\text{var}(R) \subseteq X$
- Solution: assignment of values for each $x_i \in X$ from D_i s.t. constraints in C are satisfied
- Arity of a constraint R is $|\text{var}(R)|$
- Arity of a CSP: $\max_{R \in C} \{|\text{var}(R)|\}$

COPs Revisited

Constraint optimization problem (COP): a CSP with two types of constraints

- Hard constraints (as in a CSP)
- Soft constraints (denoting preferences among tuples)
- Constraints are seen as cost functions
 - Returns for each tuple a non-negative cost
 - Hard constraints assign cost $0/\infty$ to allowed/forbidden tuples
- Weighted CSP (WCSP):
 - Minimize the objective function: the sum of all constraints $C = \{f_1, \ldots, f_m\}$

 $$f^*(X) = \sum_{j=1}^{m} f_j$$

Branch–and–Bound Revisited

A search schema for COP solving:

- Traverses the search tree defined by the problem
- Internal nodes: incomplete assignments
- Leaf nodes: complete assignments (optimal or not)
- Upkeeps upper (UB) and lower bounds (LB) for the best possible solution
 - If $UB \leq LB(t)$ for a partial assignment t, backtrack
- Basic step: branching

Lower Bound Computation

$$\text{LB}(t) = \sum_{f \in C} \min_{q} \{f(t, q)\},$$

where

- t: the current partial assignment,
- $\min_{q} \{f(t, q)\}$: minimum cost extension of t to variables in $\text{var}(f)$ not assigned in t
- Time complexity: $O(m \cdot d^{r-1})$
- Reduce to $O(m \cdot d^s)$ by considering only constraints f having at most s uninstantiated variables in $\text{var}(f)$
Bucket Elimination

A *dynamic programming schema* for solving COPs

- A variable ordering o is assumed
- Partitions C into *buckets* B_i
- B_i contains such constraints f in which x_i is the highest one in $\text{var}(f)$ according to o
- *Eliminates variables* one-by-one in descending order according to o
- Summarizes the effect by *generating an additional constraint*

Bucket Elimination (2/2)

- The additional constraint:

$$\text{elim}_i\left(\sum_{f \in B_i} f\right),$$

where

- $(f + g)(X) = f(X) + g(X)$ with scope $\text{var}(f) \cup \text{var}(g)$, and
- $(\text{elim}(f)(X) = \min_{a \in D_i} \{f(X[x_i = a])\}$ with scope $\text{var}(f) - \{x_i\}$

- Last elimination produces a constant function having the value of the optimal cost
- The optimal assignment can then be generated *backtrack-free*:

$$\sum_{f \in B_i} f$$

BE-BB(k)

Worst-case comparison:

<table>
<thead>
<tr>
<th></th>
<th>time</th>
<th>space</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB</td>
<td>exp in n</td>
<td>linear (in n)</td>
</tr>
<tr>
<td>BE</td>
<td>exp in arity of f_i, linear in n</td>
<td>exp in arity of f_i, linear in n</td>
</tr>
</tbody>
</table>

- Note: Determining the best ordering (w.r.t. f_is) is *NP-complete*

BE-BB(k): The following recursive idea

- Eliminate x_is s.t. the arity of f_i is $\leq k$ with BE
- Then apply BB to the reduced problem:
 - branch on a variable, then apply BE again if possible

Ending Remarks

BE-BB(k)

- A generalization for CSP/COP solving of an idea of combining search and directed resolution in SAT solving
- Boosts branch-and-bound with bucket elimination
- A structural parameter defines when to BB/BE
- As usual, variable ordering is somewhat crucial
- “Overwhelming advantage” on some COPs reported