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Objectives

* Introduce specialized techniques for some specific
domains and constraints for which no efficient
solving methods are known to exist

* Incomplete constraint solvers
— Equality and disequality constraints
— Boolean constraints
— Linear constraints on integer intervals

* Domain reduction rules for inequality
constraints

Incomplete constraint solvers

» Equivalence preserving reduction rules

* [f the constraints are defined using a specified
language, the general rules of Chapter 5 cannot be
used

» = the general framework is a customized to a
specific language in which the constraints are defined
and to specific domains that are used

Lemma 6.1 (Hyper-arc Consistency)

 Consider a hyper-arc consistent CSP P. Then P is
closed under the application of every domain
reduction rule which is

— equivalence preserving, and
— has only one constraint in its premise

« If a constraint solver imposes hyper-arc consistency,
then it achieves the optimal domain reduction




Equality and Disequality Constraints

- =7

* Arbitrary domains

Equality and Disequality Rules (1/2)

EQUALITY 1

(x=a: 2 €D)
(; z € D)

EQUALITY 2

(t=y: x € Dz,y € Dy)
(x=y: x € DzNDy,y € Dy N Dy)

Equality and Disequality Rules (2/2)

DISEQUALITY 1

(x £w: xeD)
{; z€0)

DISEQUALITY 2
(x#y:w & Dyy€ Dy)

DISEQUALITY 3
(xAy:xzeD,y=a)

(i &€ Dy,y € Dy)
where DI M Dy =,

(; z€D—{a},y=aq)

where a € D
DISEQUALITY 4

(c/yie—ayeD)

(: x=a,ye D —{a})
where a € D

Proof System EQU

* Theorem 6.2 (EQU) A CSP with only equality and
disequality constraints is hyper-arc consistent iff it is
closed under the applications of the proof rules of the
proof system EQU

* A constraint solver determined by the EQU rules is
incomplete

* However are very simple operations on the variable
domain and thus easy to implement




Boolean Constraints (1/2)

Boolean variables: range over {0, 1}
Boolean domain expression: x € D where D <{0,1}

Boolean expression: built out of Boolean variables
using the connectives: — A,V

Boolean constraint: s = ¢, where s and ¢ are Boolean
expressions

Boolean CSP: a CSP with Boolean domain
expressions and Boolean constraints

The predefined variables x; and x represent the
Boolean Constants true and false

Boolean Constraints (2/2)

* Simple Boolean constraints:
— Equlity constraint: x = y
— NOT constraint: —x =y
— AND constraint: xA y =z
— OR constraint: xvy=z

* Compound Boolean constraints can be reduced to
simple Boolean constraints

Transformation Rules (1/2)
(—s=t,D)
(—x=t,s=x;D,xe{0,1})
where s is not a variable and x is a new variable
(—s=t,D)
(ms=yt=y;D,ye{01})
where ¢ is not a variable and y is a new variable
(s op t=u;D)
(s op t=zyu=z;D,xe{0,})

where u is not a variable or a variable identical to s or ¢, x is a
new variable and op is A or Vv

Transformation Rules (2/2)

(s op t=u;D)
(x op t=u,s=x;D,xe{0,1})

where s is not a variable or a variable identical to ¢ or u, x is a
new variable and opis A or V

(s op t=u;D)
(s op y=ut=y;D,ye{0]l})
where ¢ is not a variable or a variable identical to s or u, y is a
new variable and op is A or V




Domain Reduction Rules Proof System BOOL (1/2)

EQU trx=yr=1—-9y=1
. . EQU 2z=yy=1—x=1
* For simple Boolean constraints ggi Je=yr=0-y=0
J fe=yy=0—-2=0
NOT | ~z=g,2=1—y=10

xAny=z;x=1L,yeD ,zeD NOT 2-z=yor=0—y=1

< Y ? 24 y? Z> NOT 3-z=y,y=1—-x=0

ey — NOT } ~r=9y,y=0—12=1
(y=zx=LyeD, zeD,) / vy

AND ITzAhy=zr=1y=1—z2=1
AND 2z Ahy=zzx=12=0—=y=0

Written as AND SzAy=—2y—1z=0—2=0
AND Jjrxhy=2r=0—2=0
— — — AND S5z hy=2y=0—2=0

X/\y—Z,X—l—)y—Z AND 6z Ahy=2zz2=1l—-2=1y=1
OR 1 zvy=zr=1—2=]

OR 2 zvy=zz=0y=0—2=10

OR 3 zVy=zr=0z2=1—y=1

OR 4§ xvy=zy=0z=1—2=1
OR 5 zvy=zy=1—2=1

OR 6 zvy=zz2=0—=2=0y=10

Proof System BOOL (2/2) Example: Full Adder Circuit (1/2)
¢ Theorem 6.3 (BOOL) A non-failed Boolean CSP is B
hyper-arc consistent iff it is closed under the i ) I P B

application of the rules of the proof system BOOL

(i ®i,)®i, =0,

G AL V(EAG®L)) =0,

Proof rules for XOR

XOR1zpy=z,2=1Ly=1—2=0
XOR 2xay=z,x=0y=0—2=10




Example: Full Adder Circuit (2/2)

To show that i =1, i,=1, 0,=0 follows from the assumption that i,=0, 0,=1

G®L =x,0 AL =y,% @l =0, AX =Y,V Y, =0,505=0,0, =1)
AND 4

GOh =x,0 AL =y,x @l =0, VY, =0,55=0,0,=1y,=0)
OR 4

(0, @i, =x,,i, NI, =Y,,x, @i, =0;i,=0,0,=1y,=0,y, =1)
AND 6

G, @i, =x,x,Di; =0,3i,=0,0,=1y,=0,y, =Li =1,i, =1)
XOR 1

(x, @i, =0i,=0,0,=1,y,=0,y, =Li,=Li, =1,x, =0)

XOR 2
(i, =0,0,=1,y,=0,y, =17 =1i,=1x, =0;0, =0)

Linear Constraints on Integer Intervals

* Linear expression: a term in the alphabet that
contains:
— Two constants, 0 and 1
— The unary function symbol ‘-’
— Binary function symbols ‘+’ and ‘-’
— Abbreviate: 1+--+1 t0 n and x+--+x f0 nx

n times n  times
 Linear constraint: s op t where op € {<,<,=,#,2,>}
— For example: 3x+4y—-5z<7

 Integer interval: [a..b]

Domain Reduction Rules for Inequality
Constraints: Example

* 3x+4y-5z<7 with xe[l.hlye[l, . h]ze[l.h]
7—4y+5z

3
any value of x that satisfies it also satisfies:

L7—-4l-+5h J
x<|—2 =

e Rewrite as: x <

3
* So [/..h] can be reduced to:

X'L7_4l+5hJ
[[..min( —=—= |,A )]

Domain Reduction Rules for Inequality
Constraints
LINEAR INEQUALITY 1

Zicpos@iX; — ZionpciX; < byx, €[l h],....x, €[l,.h,])
Zicpos@X; = Znec@iX;, Sbyx, e[ h'),....x, €[L".h,"])

where for j € POS  1,"=1,,h,"= min(hj,\_ajj)

. b— ZiePOS—{j}aili + 2, e,

. ie
OCj =

4,
andfor je NEG 1,"=max(l,,] 8, ).h, =h,

T b+X, posal; — ZieNEG—{j}aihi

p=

a,




Objectives

* Introduce some incomplete constraint solvers for

— Equality and disequality constraints

— Boolean constraints

— Linear constraints on integer intervals

* Domain reduction rules for inequality
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