
Some Incomplete Constraint Solvers
Pages: 178 – 196

Andreas Anderson
2004/02/26

Objectives

• Introduce specialized techniques for some specific 
domains and constraints for which no efficient 
solving methods are known to exist

• Incomplete constraint solvers
– Equality and disequality constraints
– Boolean constraints
– Linear constraints on integer intervals

• Domain reduction rules for inequality 
constraints

Incomplete constraint solvers

• Equivalence preserving reduction rules
• If the constraints are defined using a specified 

language, the general rules of Chapter 5 cannot be 
used

• the general framework is a customized to a 
specific language in which the constraints are defined 
and to specific domains that are used

Lemma 6.1 (Hyper-arc Consistency)

• Consider a hyper-arc consistent CSP P. Then P is 
closed under the application of every domain 
reduction rule which is
– equivalence preserving, and
– has only one constraint in its premise

• If a constraint solver imposes hyper-arc consistency, 
then it achieves the optimal domain reduction



Equality and Disequality Constraints

• =, ≠
• Arbitrary domains

Equality and Disequality Rules (1/2)

Equality and Disequality Rules (2/2) Proof System EQU

• Theorem 6.2 (EQU) A CSP with only equality and 
disequality constraints is hyper-arc consistent iff it is 
closed under the applications of the proof rules of the 
proof system EQU

• A constraint solver determined by the EQU rules is 
incomplete

• However are very simple operations on the variable 
domain and thus easy to implement



Boolean Constraints (1/2)

• Boolean variables: range over {0, 1}
• Boolean domain expression: where
• Boolean expression: built out of Boolean variables 

using the connectives: 
• Boolean constraint: s = t, where s and t are Boolean 

expressions
• Boolean CSP: a CSP with Boolean domain 

expressions and Boolean constraints
• The predefined variables xT and xF represent the 

Boolean Constants true and false
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Boolean Constraints (2/2)

• Simple Boolean constraints:
– Equlity constraint:
– NOT constraint:
– AND constraint:
– OR constraint:

• Compound Boolean constraints can be reduced to 
simple Boolean constraints
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Transformation Rules (1/2)

where s is not a variable and x is a new variable

where t is not a variable and y is a new variable

where u is not a variable or a variable identical to s or t, x is a 
new variable and op is or
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Transformation Rules (2/2)

where s is not a variable or a variable identical to t or u, x is a 
new variable and op is or

where t is not a variable or a variable identical to s or u, y is a 
new variable and op is or
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Domain Reduction Rules

• For simple Boolean constraints

Written as
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Proof System BOOL (1/2)

Proof System BOOL (2/2)

• Theorem 6.3 (BOOL) A non-failed Boolean CSP is 
hyper-arc consistent iff it is closed under the 
application of the rules of the proof system BOOL

Example: Full Adder Circuit (1/2)
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Proof rules for XOR



Example: Full Adder Circuit (2/2)

• To show that i1=1, i2=1, o1=0 follows from the assumption that i3=0, o2=1

〉===∨=∧=⊕=∧=⊕〈 1,0;,,,, 23221213131121121 oioyyyxioixyiixii

〉====∨=⊕=∧=⊕〈 0,1,0;,,, 223221131121121 yoioyyoixyiixii

〉=====⊕=∧=⊕〈 1,0,1,0;,, 1223131121121 yyoioixyiixii

〉=======⊕=⊕〈 1,1,1,0,1,0;, 211223131121 iiyyoioixxii

〉========⊕〈 0,1,1,1,0,1,0; 1211223131 xiiyyoioix

〉========〈 0;0,1,1,1,0,1,0; 11211223 oxiiyyoi

AND 4

OR 4

AND 6

XOR 1

XOR 2

Linear Constraints on Integer Intervals

• Linear expression: a term in the alphabet that 
contains:
– Two constants, 0 and 1
– The unary function symbol ‘-’
– Binary function symbols ‘+’ and ‘-’
– Abbreviate: and

• Linear constraint: s op t where 
– For example: 

• Integer interval: [a..b]
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Domain Reduction Rules for Inequality 
Constraints: Example

• with

• Rewrite as:

any value of x that satisfies it also satisfies:

• So [lx..hx] can be reduced to:
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Domain Reduction Rules for Inequality 
Constraints

LINEAR INEQUALITY 1

where for 
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Objectives

• Introduce some incomplete constraint solvers for
– Equality and disequality constraints
– Boolean constraints
– Linear constraints on integer intervals

• Domain reduction rules for inequality 
constraints


