Some Incomplete Constraint Solvers

Pages: 178-196

Andreas Anderson
2004/02/26

Objectives

- Introduce specialized techniques for some specific domains and constraints for which no efficient solving methods are known to exist
- Incomplete constraint solvers
- Equality and disequality constraints
- Boolean constraints
- Linear constraints on integer intervals
- Domain reduction rules for inequality constraints

Incomplete constraint solvers

- Equivalence preserving reduction rules
- If the constraints are defined using a specified language, the general rules of Chapter 5 cannot be used
- \rightarrow the general framework is a customized to a specific language in which the constraints are defined and to specific domains that are used

Lemma 6.1 (Hyper-arc Consistency)

- Consider a hyper-arc consistent CSP P. Then P is closed under the application of every domain reduction rule which is
- equivalence preserving, and
- has only one constraint in its premise
- If a constraint solver imposes hyper-arc consistency, then it achieves the optimal domain reduction

Equality and Disequality Constraints

- =, $=$
- Arbitrary domains

Equality and Disequality Rules (1/2)

$$
\begin{gathered}
\text { EQUALITY } 1 \\
\frac{\langle x=x ; x \in D\rangle}{\langle; x \in D\rangle} \\
\frac{\text { EQUALITY } 2}{\left\langle x=y ; x \in D_{x}, y \in D_{y}\right\rangle} \\
\left\langle x=y ; x \in D_{x} \cap D_{y}, y \in D_{x} \cap D_{y}\right\rangle
\end{gathered}
$$

Equality and Disequality Rules (2/2)

DISEQUALITY 1
$\frac{\langle x \neq x ; x \in D\rangle}{\langle; x \in \emptyset\rangle}$
DISEQUALITY 3
$\frac{\langle x \neq y ; x \in D, y=a\rangle}{\langle; x \in D-\{a\}, y=a\rangle}$
where $a \in D$
DISEQUALITY 2
$\frac{\left\langle x \neq y ; x \in D_{x}, y \in D_{y}\right\rangle}{\left\langle; x \in D_{x}, y \in D_{y}\right\rangle}$
where $D_{x} \cap D_{y}=\emptyset$,

DISEQUALITY 4
$\frac{\langle x \neq y ; x=a, y \in D\rangle}{\langle; x=a, y \in D-\{a\}\rangle}$
where $a \in D$

Proof System EQU

- Theorem 6.2 (EQU) A CSP with only equality and disequality constraints is hyper-arc consistent iff it is closed under the applications of the proof rules of the proof system EQU
- A constraint solver determined by the EQU rules is incomplete
- However are very simple operations on the variable domain and thus easy to implement

Boolean Constraints (1/2)

- Boolean variables: range over $\{0,1\}$
- Boolean domain expression: $x \in D$ where $D \subseteq\{0,1\}$
- Boolean expression: built out of Boolean variables using the connectives: \neg, \wedge, \vee
- Boolean constraint: $s=t$, where s and t are Boolean expressions
- Boolean CSP: a CSP with Boolean domain expressions and Boolean constraints
- The predefined variables x_{T} and x_{F} represent the Boolean Constants true and false

Boolean Constraints (2/2)

- Simple Boolean constraints:
- Equlity constraint: $x=y$
- NOT constraint: $\neg x=y$
- AND constraint: $x \wedge y=z$
- OR constraint: $x \vee y=z$
- Compound Boolean constraints can be reduced to simple Boolean constraints

Transformation Rules (1/2)

$$
\frac{\langle\neg s=t ; D\rangle}{\langle\neg x=t, s=x ; D, x \in\{0,1\}\rangle}
$$

where s is not a variable and x is a new variable

$$
\frac{\langle\neg s=t ; D\rangle}{\langle\neg s=y, t=y ; D, y \in\{0,1\}\rangle}
$$

where t is not a variable and y is a new variable

$$
\frac{\langle s \quad \text { op } \quad t=u ; D\rangle}{\langle s \quad \text { op } \quad t=z, u=z ; D, x \in\{0,1\}\rangle}
$$

where u is not a variable or a variable identical to s or t, x is a new variable and $o p$ is \wedge or \vee

Transformation Rules (2/2)

$$
\frac{\langle s \quad \text { op } \quad t=u ; D\rangle}{\langle x \quad \text { op } \quad t=u, s=x ; D, x \in\{0,1\}\rangle}
$$

where s is not a variable or a variable identical to t or u, x is a new variable and op is \wedge or \vee

$$
\frac{\langle s \quad \text { op } \quad t=u ; D\rangle}{\langle s \quad \text { op } \quad y=u, t=y ; D, y \in\{0,1\}\rangle}
$$

where t is not a variable or a variable identical to s or u, y is a new variable and op is \wedge or \vee

Domain Reduction Rules

- For simple Boolean constraints
$\frac{\left\langle x \wedge y=z ; x=1, y \in D_{y}, z \in D_{z}\right\rangle}{\left\langle y=z ; x=1, y \in D_{y}, z \in D_{z}\right\rangle}$
Written as
$x \wedge y=z, x=1 \rightarrow y=z$

Proof System BOOL (1/2)
EQU $1 x=y, x=1 \rightarrow y=1$
EQU 2 $x=y, y=1 \rightarrow x=1$
EQU $3 x=y, x=0 \rightarrow y=0$
$E Q U$ \& $x=y, y=0 \rightarrow x=0$
NOT $1 \neg x=y, x=1 \rightarrow y=0$
NOT $2 \neg x=y, x=0 \rightarrow y=1$
NOT $3 \neg x=y, y=1 \rightarrow x=0$
NOT $4 \neg x=y, y=0 \rightarrow x=1$
AND $1 x \wedge y=z, x=1, y=1 \rightarrow z=1$
AND 2 $x \wedge y=z, x=1, z=0 \rightarrow y=0$
AND $3 x \wedge y=z, y=1, z=0 \rightarrow x=0$
AND $4 x \wedge y=z, x=0 \rightarrow z=0$
$A N D \quad 5 x \wedge y=z, y=0 \rightarrow z=0$
AND $6 x \wedge y=z, z=1 \rightarrow x=1, y=1$
OR $1 \quad x \vee y=z, x=1 \rightarrow z=1$
OR $2 \quad x \vee y=z, x=0, y=0 \rightarrow z=0$
OR $3 \quad x \vee y=z, x=0, z=1 \rightarrow y=1$
OR \& $\quad x \vee y=z, y=0, z=1 \rightarrow x=1$
OR $5 \quad x \vee y=z, y=1 \rightarrow z=1$
OR $\quad 6 \quad x \vee y=z, z=0 \rightarrow x=0, y=0$

Example: Full Adder Circuit (1/2)

Proof rules for XOR
XOR $1 \quad x \oplus y=z, x=1, y=1 \rightarrow z=0$ XOR 2 $x \oplus y=z, x=0, y=0 \rightarrow z=0$.

Example: Full Adder Circuit (2/2)

- To show that $i_{1}=1, i_{2}=1, o_{1}=0$ follows from the assumption that $i_{3}=0, o_{2}=1$

$$
\left\langle i_{1} \oplus i_{2}=x_{1}, i_{1} \wedge i_{2}=y_{1}, x_{1} \oplus i_{3}=o_{1}, i_{3} \wedge x_{1}=y_{2}, y_{1} \vee y_{2}=o_{2} ; i_{3}=0, o_{2}=1\right\rangle
$$

$$
A N D 4
$$

$$
\text { OR } 4
$$

$\left\langle i_{1} \oplus i_{2}=x_{1}, i_{1} \wedge i_{2}=y_{1}, x_{1} \oplus i_{3}=o_{1} ; i_{3}=0, o_{2}=1, y_{2}=0, y_{1}=1\right\rangle$ AND 6
$\left\langle\underline{i_{1} \oplus i_{2}=x_{1}}, x_{1} \oplus i_{3}=o_{1} ; i_{3}=0, o_{2}=1, y_{2}=0, y_{1}=1, i_{1}=1, i_{2}=1\right\rangle$
XOR 1
$\left\langle\underline{x_{1} \oplus i_{3}}=o_{1} ; i_{3}=0, o_{2}=1, y_{2}=0, y_{1}=1, i_{1}=1, i_{2}=1, x_{1}=0\right\rangle$
XOR 2
$\left\langle; i_{3}=0, o_{2}=1, y_{2}=0, y_{1}=1, i_{1}=1, i_{2}=1, x_{1}=0 ; o_{1}=0\right\rangle$

Linear Constraints on Integer Intervals

- Linear expression: a term in the alphabet that contains:
- Two constants, 0 and 1
- The unary function symbol '-'
- Binary function symbols '+' and '-'
- Abbreviate: $\underbrace{1+\cdots+1}_{n \text { times }}$ to n and $\underbrace{x+\cdots+x}_{n \text { times }}$ to $n x$
- Linear constraint: s op t where $o p \in\{<, \leq,=, \neq, \geq,>\}$
- For example: $3 x+4 y-5 z \leq 7$
- Integer interval: [a.. b]

Domain Reduction Rules for Inequality Constraints: Example

- $3 x+4 y-5 z \leq 7$ with $x \in\left[l_{x} . . h_{x}\right], y \in\left[l_{y} . h_{y}\right], z \in\left[l_{z} . . h_{z}\right]$
- Rewrite as: $x \leq \frac{7-4 y+5 z}{3}$
any value of x that satisfies it also satisfies:
$x \leq\left\lfloor\frac{7-4 l_{y}+5 h_{z}}{3}\right\rfloor$
- So $\left[l_{x} . h_{x}\right]$ can be reduced to:
$\left[l_{x} . \min \left(\left[\frac{7-4 l_{y}+5 h_{z}}{3}\right\rfloor, h_{x}\right)\right]$

Domain Reduction Rules for Inequality

Constraints

LINEAR INEQUALITY 1

$\frac{\left\langle\sum_{i \in P O S} a_{i} x_{i}-\sum_{i \in N E G} a_{i} x_{i} \leq b ; x_{1} \in\left[l_{1} . . h_{1}\right], \ldots, x_{n} \in\left[l_{n} . . h_{n}\right]\right\rangle}{\left\langle\sum_{i \in P O S} a_{i} x_{i}-\sum_{i \in N E G} a_{i} x_{i} \leq b ; x_{1} \in\left[l_{1}^{\prime} . . h_{1}{ }^{\prime}\right], \ldots, x_{n} \in\left[l_{n}{ }^{\prime} . . h_{n}{ }^{\prime}\right]\right\rangle}$
where for $j \in \operatorname{POS} \quad l_{j}^{\prime}:=l_{j}, h_{j}^{\prime}:=\min \left(h_{j},\left\lfloor\alpha_{j}\right\rfloor\right)$
$\alpha_{j}:=\frac{b-\sum_{i \in P O S-\{j\}} a_{i} l_{i}+\sum_{i \in N E G} a_{i} h_{i}}{a_{j}}$
and for $\quad j \in N E G \quad l_{j}^{\prime}:=\max \left(l_{j},\left[\beta_{j}\right]\right), h_{j}{ }^{\prime}:=h_{j}$
$\beta_{j}:=\frac{-b+\Sigma_{i \in P O S} a_{i} l_{i}-\Sigma_{i \in N E G-\{j\}} a_{i} h_{i}}{a_{j}}$

Objectives

- Introduce some incomplete constraint solvers for
- Equality and disequality constraints
- Boolean constraints
- Linear constraints on integer intervals
- Domain reduction rules for inequality constraints

