
Bargaining with limited computation: Deliberation
equilibrium

An essay for course T-79.194, Seminar on Theoretical
Computer Science

Based on the article by Kate Larson and Tuomas Sandholm
published in Artificial Intelligence 132 (2001) 183-217

Ville Kotovirta, 41575d Ti
28 March, 2002

2

Abstract

We go through the main results from the article by Kate Larson and Tuomas
Sandholm, published in Artificial Intelligence [2]. A normative theory of interaction
for analyzing the non-cooperative game of two self-interested rational agents with
limited computational capabilities is presented. Both agents have an intractable
optimization problem, and a limited amount of time to carry out the computations.
The agents can benefit from pooling the problems and implementing the joint
problem. If no advantage is gained from pooling agents implement their individual
solutions. The equilibria for the game differ based on what kind of uncertainties there
are in the game, and whether the performance profiles are deterministic or stochastic.
We conclude with some considerations about the algorithms Larson and Sandholm
presented.

3

Contents

Abstract .. 2
Contents ... 3
Introduction.. 4
An example application... 4
The general setting... 5
The model... 6

A Performance profile tree... 6
Deliberation.. 8
Bargaining.. 8
Strategies.. 9

Equilibria and algorithms... 9
Known proposer... 10

Known deadline ... 10
Unknown deadline ... 13

Unknown proposer... 13
No Pareto efficient outcome .. 13

Other sources of uncertainty.. 14
Randomized algorithms ... 14
Agents with different algorithms ... 15
Agents do not know each others’ problem instances... 15

Conclusions .. 16
References.. 18

4

Introduction
Systems, especially in the Internet, are increasingly being used by multiple parties
with their own preferences. There is no central control of all system components, only
control of the mechanism, which means the rules of the game. The system can be seen
as a setting of a game where different components, or agents, try to find the best
individual solution to the problem at hand, and at the same time contribute to the
overall operation of the system. Each agent participating chooses a strategy of its
own.

The economic efficiency that a system achieves depends on the agents’ strategies. By
analysing the game using the Nash equilibrium solution concept, the designer of the
system can make sure that each agent is motivated to behave in a desired way. No
agent deviates from its strategy given that the others do not deviate.

However, the equilibrium for rational agents does not generally remain an equilibrium
for computationally limited agents. Early on, in the field of economic theory, it was
recognized that humans have bounded rationality, for example, due to limited
cognition. The assumption of perfect rationality and actually observed human
behavior has long been a source of economists’ dissatisfaction. This is perhaps best
evidenced in the work of Herbert Simon (see, for example [6] and [7]) . Considerable
amount of research work has focused on developing a normative model to describe
how the computationally limited agent should behave. This is a nontrivial task,
containing numerous fundamental and technical difficulties. Game theorists have also
realized the significance of computational limitations (see, for example, [4]).

In this paper we will present the main results given by Sandholm and Larson in [2] for
an ultimatum game where agents use their limited computational resources to find a
joint solution, or individual solutions for their intractable problem instances. All the
proofs are not presented here, but the reader interested in deeper explanations is
advised to consult the original paper. Also, some considerations about the results are
given.

An example application

Larson and Sandholm (herein after referred to as "the authors") give a concrete
example to clarify the problem setting [5]. Figure 1 depicts the example setting where
there are two geographically dispersed dispatch centers that are self-interested
companies. Each center is responsible for certain deliveries (tasks) and has a certain
set of vehicles (resources) to take care of them. Each agent has to minimize the
transportation costs, and handle the delivery tasks. In the figure the red arrows depict
the delivery orders for the red dispatch center (to the left) that has trucks with red
outlines, while the gray arrows are for gray dispatch center (to the right) with gray
trucks.

5

Figure 1. Example problem of the distributed vehicle routing problem [5]. See text for details.

The geographical operation areas overlap, and this creates a potential for savings in
driven mileage by pooling the tasks and resources. One of the agents may be able to
handle some of the tasks with less driving than the other. The agents must negotiate
about whether to independently deliver their own packages, or whether to share their
delivery tasks and resources in order to reduce costs.

The general setting
The distributed vehicle routing problem described above is only one example problem
setting with two self-interested agents having an intractable individual problem, and
with a potential savings gained from pooling the problems. The authors give a few
other applications with these characteristics, including

• Manufacturing, where two companies have potential subcontract relationship
• Electric power negotiation between provider and consumer (participants need

to construct their production and consumption schedules)
• Classroom scheduling
• Scheduling of scientific equipment
• Bandwidth allocation and routing in multi-provider multi-consumer computer

networks

Agents need to determine the gain achieved by pooling the problem instead of each
agent operating individually. It is assumed that the agents have anytime algorithms
that produce some feasible solution whenever the algorithm is terminated. The
solution improves as more computation time is allocated. Agent can allocate the

Agents = dispatch centersAgents = dispatch centers

Depot

Depot

Depot

6

limited time it has to calculate its own problem, other agent’s problem, or the joint
problem. Agent must decide how and when to compute on the three problems, and
based on the results of these computations decide which offer to make and which to
accept.

The model

The model for the computational bargaining has two distinct parts: the deliberation
control part and the bargaining part. Although the deliberation precedes bargaining,
these two stages are interrelated.

In the deliberation part the agents try to determine which problem to calculate, and in
the bargaining part they try to decide which value to offer, and which value to accept.

Let there be two agents, α and β , each with its own individual problem, and with the
possibility to pool, giving rise to a joint problem. Time is discretized and limited, so
agents can deliberate for at most T time steps.

Let vα
α(t) be the value of the solution to agent α’s individual problem after agent α

has computed on it for t time steps. Similarly, vα
β(t) is the value of the solution to

agent β’s individual problem, and vα
joint(t) is the value of the solution to the joint

problem after agent α has computed the problems for t time steps.

A Performance profile tree

The agents have statistical performance profiles that describe how their anytime
algorithms improve the solutions as a function of time. Agents use this information to
decide how to allocate their computation at every step of the game.

A common representation of performance profiles is a table, which contains for each
time step and each level of solution quality a probability that the solution will be of
that quality (see Figure 2).

.03

.03.20.15

.05.19.12.31.40

.13.15.24.25.17.22

.08.18.21.18.33.14.11

.15.13.31.37.23.22.20.10.09

.15.19.24.30.22.20.17.04.08

.22.30.25.16.10.16

.39.17.30.15

.24.19.08

Solution
quality

Computing time

Figure 2. An example of table-based performance profile presentation.

7

Instead of a table, the authors propose storing the values in a tree structure, which
allows conditioning along a path. The tree is constructed by collecting statistical data
from previous runs of the algorithm on different problem settings. As a run proceeds
along a path in the tree, the frequency of each edge of that path is incremented, and
the frequencies at the nodes are normalized to get the probabilities. If there is no node
for certain value, the node is generated with an edge from the previous node to it.

Figure 3 depicts an example of a performance profile tree. Each depth corresponds to
the time t of the run that the algorithm has executed. Each node at depth t is associated
with a value representing a possible solution quality, vi

z, that is obtained by running
the algorithm for t time steps on that problem. The problems are indexed by z (α, β ,
or joint), and the agents are indexed by i (α, β). For each z there is a performance
profile tree, τi

z, with which an agent i can condition its algorithm’s performance on
the problem instance.

Figure 3. An example performance profile tree.

At any depth there may be more than one node with a certain value since the path
taken to reach that value may be different depending on the problem instance.

A performance profile can be deterministic or stochastic. In Stochastic performance
profile tree each edge is associated with a probability that the child is reached in the
next step given that the parent has been reached. This makes it possible to calculate
the probability to reach any particular future node in the tree by multiplying the
probabilities on the path between two nodes. In figure 3, for example, P(B|A) is the
probability that node B will be reached given that node A has been reached. The
probabilities are calculated as described above.

A

B
C

P(B|A)

P(C|B)

0

8

7

10

12

11

10

9

8

13

12

10

12

13

11

10

9

Depth 0 1 2 3

8

A deterministic performance profile tree has only one path, which can be followed.
All the conditional probabilities are equal to one, and a solution quality value can be
determined exactly given the time of computation allocated on the problem.

Deliberation

In the model the state of deliberation of agent α at time step t is defined as

θα(t) = (nα
α, nα

β, nα
joint) (1)

where nα
α, nα

β, and nα
joint are the nodes where agent α is currently in each of the

three performance profile trees and time(nα
α) + time(nα

β) + time(nα
joint) = t.

The deliberation set is the set of deliberation states that an agent can reach in exactly t
deliberation actions.

Θα(t) = {θα(t) | time(nα
α) + time(nα

β) + time(nα
joint) = t} (2)

Bargaining

In the authors’ setting agents bargain over how to divide the surplus or cost associated
with implementing the joint problem. At some point in time, T, there is a deadline at
which time both agents must stop deliberating and start the bargaining round. The
goal of the bargaining is to decide whether to pool or to implement the individual
solutions.

The model is restricted so that only one agent is allowed to make an offer, while the
other agent has the ability to either accept or reject the offer. If a proposal is accepted,
the joint solution is implemented and the surplus is divided as agreed upon the
proposal. If no agreement is reached the individual solutions are implemented without
further interaction.

Agent α makes an offer, xα
0, to agent β , about how much agent β’s payoff will be if

they pool. If agent β accepts the offer, agent α’s solution for the joint problem is used
and agent β gets xα

0 as agreed. Agent α gets the rest of the value of the solution:
vα

joint(t) - xα
0. If the offer is rejected, individual solutions are implemented, and the

payoff for agent α is vα
α and agent β’s payoff is vβ

β. These combinations are
presented in table 1.

Agent Payoff if the offer
is accepted

Payoff if the offer
is rejected

α vα
joint - xα

0 vα
α

β xα
0 vβ

β

Table 1. Payoffs for the agents. See text for details.

9

Strategies

The agents’ strategies include actions from both the deliberation part and the
bargaining part of the game.

The deliberation part takes T time steps, and at every time step agents have to decide
on which problem they allocate the limited computation time. The deliberation
strategy for agent α is a vector, Sα

D, which contains the actions agent α will take at
every time step t during the deliberation. Each element in the vector is a mapping
from a deliberation state, θα(t) = (nα

α, nα
β, nα

joint), at time t to a deliberation action Az,
which is the action of computing one time step on the solution for problem z.

1
0

,)(−
== T

t
tDD SS αα (3)

where

},,{)(: int, jotD AAAtS βα
αα →Θ (4)

is the mapping described above. Equation (4) describes the mappings from all the
possible deliberation states that can be achieved at time step t.

At the deadline T, each agent has to decide on its offer-accept vector, which captures
agent’s strategy. An offer-accept vector contains the amount that agent would offer if
it were the proposer, and the value it would accept if the other agent made the
proposal.

A bargaining strategy for agent α with deadline T is a mapping from a state of
deliberations at time T to a two-dimensional offer-accept vectors, (xα

0, xα
α):

2)(RTS B →Θ= αα (5)

Since there are many deliberation states that can be achieved at the end of the
deliberation part, we use the notation for deliberation set, Θα, in equation (5).

A strategy for agent α contains both the deliberation and bargaining strategies:

Sα = (Sα
D, Sα

B) (6)

Equilibria and algorithms

How to make the system behave in the desired way even though agents are designed
to be self-interested real-world parties? One approach would be to make sure that no
agent is motivated to deviate to another strategy. The strategy for each agent is the
best strategy that agent has from its self-interested perspective.

This would be the Nash equilibrium concept from cooperative game theory. Actually,
a stronger requirement is needed: at any point in the game, agent’s strategy takes
optimal actions from that point on, given agent’s beliefs about what has happened so

10

far in the game, and the other agent’s strategy. This type of equilibrium is called a
perfect Bayesian equilibrium (PBE).

The authors introduce an equilibrium for computationally limited agents, which
consists of a Nash, perfect Bayesian equilibrium for both deliberation and bargaining
strategies.

An agent’s offer-accept vector is affected by the solutions that it computes and also
what it believes the other agent has computed for solutions. The fallback value for an
agent is the value obtained for the solution for its individual problem. An agent will
not accept any offer smaller than its fallback value.

The games differ significantly based on whether the proposer is known in advance or
not, whether the deadline is known or not, and whether the performance profile is
deterministic or stochastic. Figure 4 depicts the different possibilities for the games,
and we will go through these settings in the following chapters.

Known/Unknown proposer

Known/Unknown deadline

Deterministic profiles

Stochastic profiles

Figure 4. Different possibilities for the games.

Known proposer

If the proposer is known the agent not making the proposal is better off by computing
only on its own problem. By this way it maximizes its fallback value, and it will
accept any offer greater than its fallback value.

The strategies for the agent making the proposal differ based on whether the deadline
is known or not.

Known deadline

In the simplest setting, both the deadline and proposer are common knowledge. The
game differs based on whether the performance profiles are deterministic or
stochastic.

Deterministic performance profiles
If the performance profile trees are deterministic (see chapter “ A performance profile
tree”), and common knowledge, the equilibria can be analytically determined. This is
easy to conceive, since if agent α knows exactly what is the value agent β will get if it

11

allocates all the computation to its own problem, then α has two alternatives: either to
compute its own problem, or the joint problem. Agent α makes the choice based on
the β’s fallback value, vβ

β, α’s own fallback value, vα
α, and the value of the joint

problem, vα
joint. These values can be determined from the deterministic profile trees:

τα
α, τα

β, τα
joint, and τβ

β.

Stochastic performance profiles
If the performance profiles are shared but stochastic, determining the equilibrium is
more difficult. Agent α cannot be sure about the value agent β has reached as its
fallback value.

If the agents use same algorithms and, therefore, have same kind of performance
profiles, agent α may find it useful to deliberate on agent β’s problem in order to
refine its beliefs about the value agent β has obtained. On the other hand, if the agents
do not share the algorithms, any deliberation that agent α does on agent β’s problem
may not correctly correspond to the value agent β has reached. Therefore, agent
α gets no utility from computing on agent β‘s problem.

Without loss of generality we assume that agent α is the proposer and the deadline is
at time T. If we consider that agent β’s performance profile tree is stochastic agent
α’s expected utility at time T can be computed as:

)())(1())()((}{ 00int0 α
ααααααπ nVxPxnVxPE A

jo
A −+−= (7)

where PA(xα
0) (A for accept) is the probability that agent β will accept an offer xα

0,
and accordingly, (1 - PA(xα

0)) is the probability that the proposal will be rejected. The
probabilities are determined by agent α’s beliefs about what value agent β has
computed for its own individual problem.

If we also take into account that agent α’s performance profile tree is stochastic, there
is uncertainty about in what deliberation state agent’s deliberation strategy resulted.
Agent α’s expected utility function can be extended to include also the probability
that the strategy resulted in a certain deliberation state.

())())(1())()(()|)(()}({ 00int0

),,()(int

α
αααααα

θ
ααα

α
β

α
α
ααα

θπ nVxPxnVxPSTPSE A
jo

A
D

tttT

D

jo

−+−= ∑
Θ∈

(8)

where PA(θα(T) | Sα
D) is the probability of being in deliberation state θα(T) after

following deliberation strategy Sα
D. The sum is taken over all the possible

deliberation states that can be achieved at time T.

The authors develop a dynamic programming algorithm to determine agent α‘s best
response to agent β‘s strategy. Algorithm works backwards, and at each step it
computes which deliberation action, az, is optimal if agent α finds itself in
deliberation state θα(t) at time t. The sequence of actions obtained is agent α’s best-
response deliberation strategy to agent β .

12

In order to understand the algorithm we have to define a couple of more denotations.
The best offer that agent α can make to agent β , given that agent α is in state θα(T), is

())())(1())()((maxarg))((int0 α
αααα θ nVxPxnVxPTx A

jo
Ax

−+−= (9)

Let πα
D(Az, θα(t)) denote the utility to agent α of computing on problem z (taking the

action Az) at time t + 1 when it finds itself in deliberation state θα(t). Here, we
assume that agent β follows a strategy Sβ

D known to agent α. Algorithm 1 computes
the best-response strategy for agent α.

For each deliberation state at time T

())())(1())()((maxarg))((int0 α
αααα θ nVxPxnVxPTx A

jo
Ax

−+−←

For time t = T – 1 down to 0

{ }))(,(maxarg))((tAEtA zD

A

z
z ααα θπθ ←

Return ()))()),(((,))((01
0

α
αααα θθ nVTxtA T

t
z −

=

Algorithm 1a. Pseudo-code presentation of the algorithm for the best response strategy
for agent α, given that α is the proposer, deadline is known, and the performance
profiles are stochastic.

For each deliberation state at time T

Find the offer, which will give the highest expected utility.

For time t = T – 1 down to 0

Find the action Az, which will give the highest expected utility at time t
+ 1 when agent α finds itself in deliberation state θα(t).

Return a vector, which consists of two vectors: one containing all the optimal
actions for each deliberation state from time t = 0 to t = T –1, and an offer-
accept vector containing the amount that agent would offer at time T if it were
the proposer, and the value it would accept if the other agent made the
proposal.

Algorithm 1b. “Plain English” explanation for the algorithm 1a.

The authors claim that algorithm 1 correctly computes a PBE strategy for agent α.

13

Unknown deadline

If the agents do not know the deadline, a new source of uncertainty, the probability
that the deadline arrives at time t, is added to the problem setting. Agents update their
beliefs about a probability distribution of the deadline whenever time t is reached but
the deadline does not arrive. The authors present dynamic programming algorithms
both for deterministic and stochastic performance profiles that incorporate the
probability for the deadline, and correctly compute a PBE strategy for agent α.

Unknown proposer

If the proposer is unknown neither agent may have a dominant strategy. There are
instances where in equilibrium neither agent has a pure strategy, but the game may
have a mixed strategy PBE. See [2] for an example game setting.

No Pareto efficient outcome

It is often of interest to ask whether an outcome is optimal. An optimal outcome has
the property of Pareto efficiency. It means that there is no alternative outcome where
some agent is better off without making some other agent worse off.

In the setting where the proposer is unknown it is possible to have an outcome that is
not Pareto efficient. Here, we present an example where agents allocate their
deliberation resources in a non-optimal way in equilibrium.

0 2

Agent α

3.5

Joint
0

1

Agent β

0

Figure 5. Performance profile trees where the equilibrium is not Pareto efficient.

Figure 5 depicts the performance profiles for both agents and the joint problem.
Agents are allowed to make only one deliberation step, and the probability for agent α
to be the proposer is ½. Each agent has three different strategies in the game, and the
strategy to follow depends on what the other agent has done (i = {α, β}):

Si
1: OAi=(null, ‘own value’). Agent calculates it’s own problem, offers null if it’s the

proposer, and accepts any offer greater than or equal to its own value.
Si

2: OAi=(0, 0). Agent calculates the joint problem, offers 0 if it’s the proposer, and
accepts any offer greater than or equal to 0.
Si

3: OAi=(‘other’s value’, 0). Agent calculates the joint problem, offers ‘other agent’s
value’ if it’s the proposer, and accepts any offer greater than or equal to 0.

The game is presented in table 2. Here, we will demonstrate, as an example, how to
calculate the value for a situation where both agents played S3. If agent α is the

14

proposer it will offer 1, and gain 3.5 – 1 = 2.5. In this case agent β will accept the
offer and it gets 1 as agreed. On the other hand, if agent β is the proposer, it will offer
2, and agent α will accept the offer. The value for agent β in this case is 3.5 – 2 = 1.5,
and for agent α the value is 2. If we sum over the two possibilities we get ½ * (2.5 +
2) = 2.25 for agent α, and ½ * (1.5 + 1) = 1.25 for agent β .

There exists a unique pure Nash equilibrium where each agent computes its own
problem. However, the equilibrium outcome is not Pareto efficient, since both agents
would be better off if agent α played Sα

3 and agent β played Sβ
3.

Sβ
1 Sβ

2 Sβ
3

Sα
1 2 1 2 0 2 0.75

Sα
2 0 1 1.75 1.75 2.75 0.75

Sα
3 1.25 1 1.25 2.25 2.25 1.25

Table 2. Example of setting with no Pareto efficient outcome. In each cell there are two values,
one for agent α, and the other one for agent β. The values indicate the utility for each agent, if the
agents followed the strategies written in bold face type.

In general, solving the unknown proposer problem is hard. The authors present a
general method for solving the problem with an unknown proposer, but they remind
that the general techniques presented do not take advantage of specific properties of
the particular game. Specially designed algorithms, as the one presented above, may
be more efficient than general techniques for computing equilibria. Readers interested
in the general method are referred to [2].

Other sources of uncertainty

Randomized algorithms

The behavior of randomized algorithms is dependent both of their input and also
values produced by a random number generator. Simulated annealing is an example
of randomized algorithms [1, 3].

The authors present an augmented performance profile tree, which include two types
of nodes, value nodes and random nodes. In figure 6, an example of an augmented
performance profile tree is presented. Node B is a random node, and the edges
emanating from it contain certain probabilities.

15

A

C

P(B|A)

P(0)

0

12

11

9

8

D

B

P(1)

3

P(C|A)
P(D|C)

2

Figure 6. An augmented performance profile tree.

The roles of deliberation are slightly different when agents use randomized
algorithms. Agent computing other agent’s problem may not be sure that its random
number generator produces the same numbers as the other agent’s generator does. An
agent can use its deliberation resources to emulate the run of a random algorithm by
choosing appropriate “random” values. By emulating agent can find out what possible
values the other agent may have achieved.

Agents with different algorithms

Agents do not necessarily use the same algorithms. Agent α may be very skilled at
solving one problem type while agent β have different algorithms skills. In this case,
if the algorithms do not correlate anyhow, there is no need for an agent to use its
deliberation resources to compute solutions for the other agent’s problem. If the
algorithms correlate an agent may find it useful to deliberate on opponent’s problems.

Agents do not know each others’ problem instances

Another source of uncertainty occurs when agents do not know what problem
instance, tasks and resources, the opponent has. In this case, each agent must have a
probability distribution over possible problem instances of the opponent. These
probabilities can be coded in an augmented performance profile tree as presented in
figure 7. In order to update the probabilities, the agents must learn each others’
problem instances at the end of the game.

16

P(Problem instance 1)

P(Problem instance 2)

P(Problem instance 3)

Figure 7. An augmented performance profile tree that one agent uses for the other agent’s
problem, when there is uncertainty about other agent’s problem instance. The tree can be used to
determine which node the other agent might have resulted in its calculations.

Conclusions

We have now shortly presented what the authors suggest as a framework for
analyzing the non-cooperative game of self-interested rational agents with limited
computational capabilities.

In the setting, each agent has an intractable optimization problem, and a limited
amount of time to carry out the computations. The agents can benefit from pooling the
problems and implementing the joint problem, but if the cooperation is not achieved
agents implement their individual solutions. When the deadline comes one of the
agents makes a proposal for the other. The game differs whether the proposer is
known or not.

The authors analyzed the game with some sources of uncertainty presented. Agents
may have randomized algorithms in use, they may use different algorithms, or one of
the agents may not know exactly the opponent’s problem instance.

The framework the authors presented seems to be well justified and robust for
analyzing the game of two agents with limited computational capabilities. In simple
cases an equilibrium is achieved, and agents have pure strategies which to follow.

The authors discuss the algorithms from a theoretical point of view. They also give
considerations about the computational complexity, but they do not give any
examples of using their algorithms in real-world problems. It would have been
interesting to see how the algorithms are implemented, and how they manage some
real problem.

The authors present a concept of a performance profile tree, where statistical data is
gathered about how the games were played earlier. In simple cases the tree is

17

constructed efficiently and proven to be useful, but if the solution quality and time are
discretized more finely, the number of possible runs increases, and more runs need to
be seen to populate the space. The space should be populated densely to make the
values in the tree correlate with the real probabilities of the game. This may be
difficult if there are many sources of uncertainty in the game. The more complicated
the setting is the more runs it takes for the performance profile trees to saturate to
useful values, and the game to saturate towards an equilibrium.

One can imagine that in reality, there may be many sources of uncertainty involved,
and the computation of equilibrium is not that straightforward. Especially in the
Internet, where agents meet to solve common problems, these uncertainties must be
taken into consideration. Agents may have different bandwidths in use, the
communication line may be disconnected from time to time, some data may be lost,
the agents may use different algorithms, have different problem instances, and the
computational capabilities of the agents may vary.

The authors have plans to extend their framework in several directions. One
interesting improvement would be to take more agents into the game. This makes the
game setting a way more complex because of the combinatorial explosion of different
ways to pool the problems. One can imagine that with more than two agents the
equilibrium is harder to obtain, but it is important to understand multi-agent games in
the environments of distributed computation, like the Internet.

18

References

[1] Kirkpatrick, S.; Gelatt, C.; Vecchi, M. Optimization by simulated
annealing, Science 220 p. 671–680. 1983.

[2] Larson, K.; Sandholm T. Bargaining with limited computation:
Deliberation equilibrium. Artificial Intelligence 132, p. 183-217. 2001.

[3] Luke, B. Simulated Annealing.
http://members.aol.com/btluke/simann1.htm

[4] Rubinstein, A. Modeling bounded Rationality. MIT Press. Cambridge,
MA. 1998.

[5] Sandholm, T; Lesser, V.R. Coalitions among computationally bounded
agents, Artificial Intelligence 94 (1), p 99-137. Special issue on
Economic Principles of Multiagent Systems. 1997.

[6] Simon, H. Rational Decision Making in Business Organizations. The
American Economic Review, Volume 69, Issue 4, 493-513.
September. 1979. http://www.sjcny.edu/~kaplan/pdf/simon_79.pdf

[7] Simon, H. Decision Making and Problem Solving. National Academy
Press. Washington, DC. 1986. http://www.dieoff.org/page163.htm

