
Routing algorithms

Jan Lönnberg, 51101M

October 2, 2002

Based on G. Tel: Introduction to Distributed

Algorithms, chapter 4.

1

Contents

• Introduction

• Destination-based routing

• Floyd-Warshall (single processor)

• Toueg (distributed)

• Other algorithms

• Netchange algorithm

• Conclusion

Jan Lönnberg — T-79.192: Routing algorithms

2

Introduction

• Purpose of routing

• Desirable properties of routing

• Graph representation

Jan Lönnberg — T-79.192: Routing algorithms

3

Purpose of routing

• In many applications, there are separate nodes of some sort that

wish to communicate with each other using communications

channels of some sort.

• Example applications:

– Telecommunications networks, e.g.:

∗ POTS/PSTN

∗ Mobile phone networks

∗ Internet

∗ Local area networks

– Parallel (multiprocessor) computers

– Processes in distributed applications

Jan Lönnberg — T-79.192: Routing algorithms

4

Purpose of routing

• However, not all nodes are usually connected to each other, as

connecting all nodes directly to each other involves lots of

wires/cables and/or high-powered transceivers.

• Nodes in network must forward other nodes’ transmissions to

correct destination.

• The process of determining where to forward packets and actually

doing so is called routing.

Jan Lönnberg — T-79.192: Routing algorithms

5

Desirable properties of routing

• All packets should reach their destination (unless prevented by

other factors, e.g. congestion).

• Data transfer should be as quick and efficient as possible. Using the

shortest or fastest route helps achieve this.

• Routing computations should be as quick and easy as possible.

• The algorithm should adapt to:

– Topology changes (new or removed channels).

– Changing load.

• The algorithm should treat different users fairly.

Jan Lönnberg — T-79.192: Routing algorithms

6

Graph representation

• The network is represented as a graph.

• Each node is represented as a vertex.

• Each channel or connection between two nodes is represented as

an edge.

• The weight of each edge is defined as the cost of using the edge in

a transmission path. This cost typically approximates the delay

imposed on a message sent through the channel.

Jan Lönnberg — T-79.192: Routing algorithms

7

Graph representation

• Typical weight functions:

– Minimum hops (all edges have the same weight).

– Shortest path (every edge has a constant non-negative weight).

– Minimum delay (every edge has a non-negative weight that

depends on the traffic in the channel).

• In realistic networks, all weights are positive; nodes connected with

zero-weight channels can be considered a single node.

• The cost of sending a message along a route in the network is

defined as the sum of the weights of the edges along the

corresponding path.

Jan Lönnberg — T-79.192: Routing algorithms

8

Destination-based routing

• Simple routes

• Optimal sink trees

Jan Lönnberg — T-79.192: Routing algorithms

9

Simple routes

• For simplicity, we assume that all traffic between two nodes is sent

along a single route. Splitting traffic over several routes (bifurcated

routing) is quite complex.

• For each graph, there is at least one optimal or shortest path

between every pair of nodes (assuming that the graph does not

have negative-weight cycles) that is a simple path (has no cycles).

• Proof: For every non-simple path, we can generate a simple path

that is shorter or equally long by removing all cycles. As there is

only a finite amount of simple paths, at least one of the simple paths

must be a shortest path.

• Similarly, if we assume that all cycles have positive length, all

optimal paths are simple.

Jan Lönnberg — T-79.192: Routing algorithms

10

Optimal sink trees

• For each destination node, we can construct an optimal sink tree: a

tree rooted at the destination and containing only the edges required

for optimal paths from every source node to the destination.

• Construction:

– Start with the destination node as root and nothing else.

– Repeat until all nodes in the network are in the tree:

∗ Take any node v not in the tree and add it to the tree.

∗ Add edges in the optimal path (and the nodes they are

connected to, if they are not yet in the tree) from v to the root

to the tree until a vertex z in the tree is reached.

Jan Lönnberg — T-79.192: Routing algorithms

11

Optimal sink trees

• The initial sink tree is trivially optimal.

• In the path addition step the optimal path from v to the root is

changed by replacing the partial path from z to the root with the

existing optimal path in the tree. As this partial path is optimal

(induction assumption) it can not be longer than the partial path it

replaces. Thus, the resulting path in the tree from v to the root is

optimal.

• Similarly, the paths from the other newly added vertices in the tree

to the root must be optimal, otherwise the route from v to the root

would not be optimal (contradicting the result of the previous step).

• Thus, the routes in the tree from all the newly added vertices to the

root are optimal.

Jan Lönnberg — T-79.192: Routing algorithms

12

Floyd-Warshall

• Basic idea

• Description

• Pseudo-code

• Analysis

Jan Lönnberg — T-79.192: Routing algorithms

13

Floyd-Warshall — Basic idea

• Calculates shortest path between all pairs of nodes in a graph.

• Basic idea:

– Start off with paths that consist only of a single edge.

– Iteratively compute paths with an increasing set of possible

intermediate nodes until all nodes can be intermediate nodes.

– Add one node at a time (the pivot node) to the set of possible

intermediate nodes.

Jan Lönnberg — T-79.192: Routing algorithms

14

Floyd-Warshall — Description

• Input: a weighted graph G = (V,E) with edge weights ωuv (for the

edge from u to v).

• All cycles in the graph must have positive length.

• As proven earlier, the shortest simple path is optimal, so we only

consider paths in which each node can only occur once.

• An S-path is a path in G in which the intermediate nodes belong to

S ⊆ V .

• If S ′ = S ∪ {w}, then a simple S ′-path from u to v is either an

S-path from u to w concatenated with an S-path from w to v or an

S-path from u to v (remember, w may only occur once in the path).

Jan Lönnberg — T-79.192: Routing algorithms

15

Floyd-Warshall — Description

• Thus, a shortest S ′-path from u to v is either a shortest S-path

from u to v or a shortest path from u to w combined with a shortest

path from w to u; whichever is shorter.

• Denoting the length of a shortest S-path from u to v dS(u, v),

dS′

(u, v) = min(dS(u, v), dS(u,w) + dS(w, v)).

• As the set of V -paths in G is the same as the set of simple paths in

G, the length of the shortest path from u to v is dV (u, v).

Jan Lönnberg — T-79.192: Routing algorithms

16

Floyd-Warshall — Description

• The Floyd-Warshall algorithm is a dynamic programming algorithm

that calculates the shortest S-path for increasingly large S, adding

one vertex at a time, using the relationships described here.

• The algorithm maintains a table D[u, v] that contains the value of

dS(u, v).

• The algorithm also maintains a table P [u, v] containing the next

hop on the route from u to v. As all shortest paths are simple, the

route contains no cycles and the next hop description is sufficient.

• A sink tree Tv for destination v can be formed using the edges

corresponding to the entries in P [u, v] and vertex u for every

u 6= v for which P [u, v] 6= null.

Jan Lönnberg — T-79.192: Routing algorithms

17

Floyd-Warshall — Pseudo-code

FLOYDWARSHALL(Graph G = (V,E), Weights ω):

S ← ∅

for all u, v ∈ V

if u = v

D[u, v]← 0

P [u, v]← u

else if uv ∈ E

D[u, v]← ωuv

P [u, v]← v

else

D[u, v]←∞

P [u, v]← null

Jan Lönnberg — T-79.192: Routing algorithms

18

Floyd-Warshall — Pseudo-code

while S 6= V

Choose any w ∈ V \ S.

for all u, v ∈ V

if D[u, v] > (D[u,w] + D[w, v])

D[u, v]← D[u,w] + D[w, v]

P [u, v]← P [u,w]

S ← S ∪ {w}

return(D,P)

Jan Lönnberg — T-79.192: Routing algorithms

19

Floyd-Warshall — Analysis

• As the main loop contains three nested loops, each with |V |

iterations and loop contents that take Θ(1) time, the total running

time is Θ(|V |3) (initialisation is Θ(|V |2) using similar arguments).

• To run Floyd-Warshall, all information about the network must be

available to a single processor.

Jan Lönnberg — T-79.192: Routing algorithms

20

Toueg

• Basic idea

• Simple algorithm

– Description

– Pseudo-code

• Improved algorithm

– Description

– Pseudo-code

– Analysis

Jan Lönnberg — T-79.192: Routing algorithms

21

Toueg — Basic idea

• Distributed algorithm based on Floyd-Warshall.

• Each node need initially only be aware of the properties (weights

and node at other end) of its direct channels.

• The algorithm ensures that each node gets distances and next hops

for the packets it sends and/or forwards to any other node.

Jan Lönnberg — T-79.192: Routing algorithms

22

Toueg — Simple algorithm — Description

• Floyd-Warshall algorithm with variables split over nodes of the

network.

• Every node has information on the shortest route (found so far) to

every other node.

• In every step every node requires distance information from the

pivot node, so the pivot node broadcasts the information over the

entire net.

• The simple algorithm’s major problem is that it requires a broadcast

to all nodes in the network before routing tables have been

calculated! It also transmits data unnecessarily.

Jan Lönnberg — T-79.192: Routing algorithms

23

Toueg — Simple algorithm — Pseudo-code

TOUEG(Vertices V,Nu, Weights ωu) on u:

Su ← ∅

for all v ∈ V

if u = v

Du[v]← 0

Pu[v]← u

else if v ∈ Nu

Du[v]← ωuv

Pu[v]← v

else

Du[v]←∞

Pu[v]← null

Jan Lönnberg — T-79.192: Routing algorithms

24

Toueg — Simple algorithm — Pseudo-code

while S 6= V

Choose w ∈ V \ S according to predefined order.

if u = w

Broadcast Du.

else

Receive Dw.

for all v ∈ V

if Du[v] > (Du[w] + Dw[v])

Du[v]← Du[w] + Dw[v]

Pu[v]← Pu[w]

S ← S ∪ {w}

return(Du, Pu)

Jan Lönnberg — T-79.192: Routing algorithms

25

Toueg — Improved algorithm — Description

• If Du[w] =∞ in the main loop, the test is always false. Thus, a

node u for which Du[w] =∞ need not receive data from pivot w.

• In other words, w only needs to send routing data to nodes that

have a next hop node and are therefore part of its sink tree Tw.

• However, although each node knows its parent in Tw, the parent

does not know its children.

• Each node tells it neighbour every iteration whether it is a neighbour

or not.

Jan Lönnberg — T-79.192: Routing algorithms

26

Toueg — Improved algorithm — Pseudo-code

TOUEG(Vertices V,Nu, Weights ωu) on u:

Su ← ∅

for all v ∈ V

if u = v

Du[v]← 0

Pu[v]← u

else if v ∈ Nu

Du[v]← ωuv

Pu[v]← v

else

Du[v]←∞

Pu[v]← null

Jan Lönnberg — T-79.192: Routing algorithms

27

Toueg — Improved algorithm — Pseudo-code

while S 6= V

Choose w ∈ V \ S according to predefined order.

for all x ∈ Nu:

if Pu[w] = x

Send child(w) message to x.

else

Send notchild(w) message to x.

Wait for |Nu| child /notchild messages.

Jan Lönnberg — T-79.192: Routing algorithms

28

Toueg — Improved algorithm — Pseudo-code

if Du[w] <∞

if u 6= w

Receive Dw from Pu[w].

for all x ∈ Nu:

if a child message was received from x

Send Dw to x.

for all v ∈ V

if Du[v] > (Du[w] + Dw[v])

Du[v]← Du[w] + Dw[v]

Pu[v]← Pu[w]

S ← S ∪ {w}

return(Du, Pu)

Jan Lönnberg — T-79.192: Routing algorithms

29

Toueg — Improved algorithm — Analysis

• The main loop is executed |V | times. It contains a loop with |V |

iterations (and a few with O(|V |) iterations) and loop contents that

take Θ(1) time. The total running time is Θ(|V |2).

• The improved algorithm removes the need for broadcasting.

• Assume that a pair consisting of an edge/path weight and a node

name can be sent in W bits.

• Then, the child and nochild messages are W bits.

• The Dw messages are |V |W bits.

• 2 child /nochild messages per edge and iteration and one table

transfer per vertex at the most per iteration.

• O(|V |3W) bits total.

Jan Lönnberg — T-79.192: Routing algorithms

30

Other algorithms

• Alternative view

• Merlin-Segall

• Chandy-Misra

– Basic idea

– Pseudo-code

– Analysis

Jan Lönnberg — T-79.192: Routing algorithms

31

Alternative view

• Shortest route from u to v trivial if u = w.

• Otherwise, the shortest route consists of a channel to a neighbour

and a shortest route from that neighbour to v.

• Calculating this way only requires local data and information from

neighbours.

• Also, each destination can be calculated separately.

• Formally, if u 6= v, d(u, v) = minw∈Nu
(ωuw + d(w, v)).

Jan Lönnberg — T-79.192: Routing algorithms

32

Merlin-Segall

• Each node maintains an estimated distance and next hop for every

destination.

• Every node sends each distance to every neighbour except the next

hop node for that destination whenever its distance changes.

• If the sum of a received distance to a node and the weight of the

channel to the node advertising this distance is less than the current

distance, the next hop is set to the advertising node and the

distance to the aforementioned sum.

• Takes |V | update rounds.

• O(|V |2|E|W) bits total transmitted.

• Cycle-free even when updating.

Jan Lönnberg — T-79.192: Routing algorithms

33

Chandy-Misra — Basic idea

• Based on diffusing computation paradigm; one node starts the

calculation and activates other nodes who in turn activate other

nodes, and so on.

• Destination v0 starts by telling its neighbours that it can reach itself

at a distance of 0.

• Each node, on receiving information about a shorter route to a

destination, updates its routing table (as in previous algorithms) and

tells its neighbours.

Jan Lönnberg — T-79.192: Routing algorithms

34

Chandy-Misra — Pseudo-code

Global variables (for node u):

Du[v0]←∞

Pu[v0]← null

STARTCHANDYMISRA(Vertices V,Nu, Weights ωu) on v0:

Dv0
[v0]← 0

for all w ∈ Nv0

Send (v0, 0) to w.

Jan Lönnberg — T-79.192: Routing algorithms

35

Chandy-Misra — Pseudo-code

RECEIVEMESSAGE(Sender w, Message (v0, d), Vertices Nu) on u:

if d + ωuw < Du[v0]

Du[v0]← d + ωuw

Pu[v0]← w

for all x ∈ Nu

Send (v0, Du[v0]) to x.

Jan Lönnberg — T-79.192: Routing algorithms

36

Chandy-Misra — Analysis

• Correctness of Chandy-Misra can be shown by considering the

behaviour of the algorithm in an optimal sink tree inductively.

• Initially, the root has calculated its distance correctly.

• Induction hypothesis: when a node that is n hops away from the

root or less becomes aware of an optimal route to the root, it

transmits its distance information to its neighbours, which include its

children in the sink tree. This happens after n iterations

(transmissions) at the latest.

• Thus, nodes at a distance of n + 1 hops from the root will receive

information about an optimal route after at the most n + 1 iterations.

Jan Lönnberg — T-79.192: Routing algorithms

37

Chandy-Misra — Analysis

• By induction, all nodes in the optimal sink tree will be aware of

optimal routes within |V | iterations, as this is the greatest possible

distance.

• Problem: the amount of messages is exponentially bounded.

• If all weights are 1, the shortest path for one destination can be

calculated in O(|V ||E|) messages of W bits each.

Jan Lönnberg — T-79.192: Routing algorithms

38

Netchange algorithm

• Assumptions

• Basic idea

• Pseudo-code

• Invariants

• Correctness

• Problems

• Modifications

Jan Lönnberg — T-79.192: Routing algorithms

39

Netchange algorithm — Assumptions

• The size of the network (|V |) is known to all nodes.

• The channels are FIFO.

• Nodes are aware of changes made to channels to which they are

connected.

• Minimum hop paths are calculated.

Jan Lönnberg — T-79.192: Routing algorithms

40

Netchange algorithm — Basic idea

• Each node u keeps track of the estimated distance Du[w, v] from

each neighbour w to every destination v.

• On receiving a message containing a distance from a neighbour to

a destination, a node:

– Updates its copy of the distance from the neighbour to the

destination.

– Recomputes the route to this destination.

Jan Lönnberg — T-79.192: Routing algorithms

41

Netchange algorithm — Basic idea

• When a channel fails, remove the neighbour from the list of

neighbours and recompute all routes.

• When a new channel appears:

– Add the new neighbour.

– Set the estimated distance to the neighbour to |V |.

– Send the entire distance table to the new neighbour.

Jan Lönnberg — T-79.192: Routing algorithms

42

Netchange algorithm — Basic idea

• Recomputation of route to destination v:

– The distance from a node to itself is always 0.

– For all other destinations, find the neighbour w with the least

estimated distance d to the destination and add 1 to this

distance.

– If d + 1 < |V |, update the distance entry for the destination and

change the next hop for the destination to w. Otherwise, set the

next hop to null and the distance to |V | (no route known).

– If the distance to the destination has changed send a distance

message to all neighbours.

Jan Lönnberg — T-79.192: Routing algorithms

43

Netchange algorithm — Pseudocode

Global variables and initialisation (for node u):

Nu ← neighbours of u.

G = (V,E)← network.

for all v ∈ V :

Du[v]← |V |

Pu[v]← null

for all w ∈ Nu:

Du[w, v]← |V |

Du[u]← 0

Pu[u]← u

for all w ∈ Nu:

Send distance message (u, 0) to w.

Jan Lönnberg — T-79.192: Routing algorithms

44

Netchange algorithm — Pseudocode

RECOMPUTE(Vertex v) (for node u):

if v = u

Du[v]← 0

Pu[v]← u

else

d← 1 + minw∈Nu
Du[w, v]

if d < |V |

Du[v]← d

Pu[v]← w for which 1 + Du[w, v] = d in last min.

Jan Lönnberg — T-79.192: Routing algorithms

45

Netchange algorithm — Pseudocode

else

Du[v]← |V |

Pu[v]← null

if Du[v] has changed in this RECOMPUTE call

for all x ∈ Nu:

Send distance message (v,Du[v]) to x.

Jan Lönnberg — T-79.192: Routing algorithms

46

Netchange algorithm — Pseudocode

RECEIVEDISTANCEMESSAGE(v,d) (for node u from w):

Du[w, v]← d

RECOMPUTE(v)

CHANNELFAIL(Neighbour w) (for node u):

Nu ← Nu \ {w}

for all v ∈ V RECOMPUTE(v)

CHANNELREPAIR(w) (for node u from w):

Nu ← Nu ∪ {w}

for all v ∈ V :

Du[w, v]← |V |

Send distance message (v,Du[v]) to w.

Jan Lönnberg — T-79.192: Routing algorithms

47

Netchange algorithm — Invariants

• Neighbour table Nu reflects the channels that u is connected to.

• The estimated distance Dw[v] from neighbour w of u to a

destination v is in:

– The neighbour distance table as Du[w, v], if no message about

it is in transit.

– The last distance message sent by w about its distance to v, if

such a message is in transit.

• The node’s estimated distance to the destination is 1 more than the

minimum distance in the neighbour distance table to the destination,

if this sum is less than |V |. If not, the node’s estimated distance to

the destination is |V |.

Jan Lönnberg — T-79.192: Routing algorithms

48

Netchange algorithm — Correctness

• When no more messages are being transferred, each node’s

estimated distance to a destination is 1 more than the minimum

estimated distance from the neighbour to the destination (if such a

neighbour with a distance less than |V | to the destination exists)

and 0 if the destination is the node itself. This is the same as the

recursive definition of distance, so all routes that are found are

optimal. Similarly, any routes found have a length of |V | − 1 at the

most, and if no route exists, the distance is estimated at |V |.

• Proving that Netchange terminates involves defining a function from

a state of the algorithm to a finite subset of
�

and showing that state

change in the algorithm decreases the value of the function,

implying that the algorithm executes a finite amount of steps.

Jan Lönnberg — T-79.192: Routing algorithms

49

Netchange algorithm — Problems

• The algorithm only gives meaningful results when it has stabilised;

i.e. when no messages are in transit. Thus, if topological changes

are frequent, the algorithm is useless.

• Detecting a stable state is hard.

Jan Lönnberg — T-79.192: Routing algorithms

50

Netchange algorithm — Modifications

• By changing the recompute procedure, the algorithm can be

adapted to shortest path routing. Proving that the resulting

algorithm works is harder.

• The algorithm can also be adapted to changing channel weights,

but this is not very useful if changes are frequent.

Jan Lönnberg — T-79.192: Routing algorithms

51

Conclusion

• Choosing a routing algorithm is a matter of horses for courses;

things to consider include the frequency of changes in the network,

whether the routing tables can be calculated in a centralised fashion

and the the cost function one wishes to minimise.

• On static networks, simple algorithms can be used to calculate fixed

routing tables.

• Dynamically changing networks require more complex distributed

algorithms to be usable.

Jan Lönnberg — T-79.192: Routing algorithms

